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ABSTRACT: In this year the author reach his age of 65. Therefore, it is proper moment to present whole his scientific achievements
accumulated during the last 42 years of professional life and 39 years of scientific activity, oriented at all on bar structures. There, we can
find investigations related to: analytical approaches of plane bar grids and double layer trusses: plane cylindrical and spherical; very
general and effective theory for space bar structures, fundamental theory - common for single straight bars with any cross-sections, as well
with thin-walled or full cross-sections (compact or solid, too); homogenous or composite. Moreover, the theory concern of global physical
relations for whole bar (displacements of ends to internal forces) and stress calculations. The analysis can be led in the range of static,
dynamics or dynamical-stability. At last, were proposed some analytical, numerical and hybrid effective approaches to solutions of very
wide class of structures — practically with almost any: scheme, loading and support systems. Were considered motionless and moving
loadings for bridges or airstrips, etc., too. In this algorithms were used originally elaborated Difference-Matrix Equation Method, new
application of Finite Differences Method — 3D Time Space Method for dynamics and even application of standard commercial MS Excel
tool. The theories were verified by certain own experimental researches.

Besides wide activity, concerning of mechanical behaviour of bar structures, was proposed by author some ideas concerning of
morphology of bar structures oriented on large span roofs — plane and double-curvature - domes, including in it so called UNIDOM space

bar system.

Summarizing above short enumeration of solved tasks, it seems, that it is worthy to give such review and present it in one publication.
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1. INTRODUCTION

The paper presents short characteristics of scientific achievements and
complete list of publications of the present author in 65 year of his life.
The sequential chapters try to give more important information about
the subject and domains of his activity, obtained results and to show
importance of its application for civil engineering.

All scientific and professional activity are concentrated on providing
new, better, complex theories for description, analysis and synthesis of
as well single straight bars and first of all large, complicated space bar
structures, too. All theories are oriented on computer methods and are
applied in several dozen own prepared computer programs and systems.

The author was working several dozen years on designing of own
computer systems with different destinations and its automation, all
based on elements of own theories. They were produced mainly for
scientific reasons Refs 30, 32, 35 etc. and are very effective, but never
were of commercial destination. So, the paper presents experiences in
domain of exploitation these computer program systems, destined for
designing of various types of mainly large space bar structures. Most of
these programs were oriented on large span roofing systems like: flat
double layer bar structures, vaults and domes. They are enabling
analysis and synthesis of many types space bar structures. Some of they
provide automatic dimensioning of bars cross-sections, shape and form-
finding of whole structures, with even optimisation elements. The bars
of these structures can have any boundary condition. There are possible
analyses: static, dynamic, stability and dynamical stability. Some other
programs are oriented on experimental and theoretical analyses of
particular bar with thin-walled or full- homogenous or composite bars.
In these programs were applied mainly own, original theories from
domains: strength of materials Ref 35, thin-walled bars Refs 16, 30, 32,
composite bars Refs 16, 30, 32, 35, etc., space bar structures e.g. Refs
1-5, 8-21, 28, 29, 252 etc. or 3D-Time Space Method (3D-TSM) for

dynamics Refs 223, 236-238, 241 and numerical algorithms Refs 4, 5,
7,8,9, 18, 28, 29 etc.

Certain concise inspection and classification of whole activity of author

are giving following keywords, grouped in some categories:

[ analysis, synthesis, experiments, computer programs, theories, thin-
walled, composite structures, bars, straight bars,

[1 uniform, theory, static, dynamics, stability, dynamical stability.
strength of straight bars, moving loads,

[ complicated, space bar structures, geometry, family, two-curvature,
bar domes, regularity, wavy domes, free form,

[1 space bar system, UNIDOM, architectural forms,

[1 Computer Aided Design, numerical, comparisons, tests, evaluate,
exactness, errors, safety.

2. EXPERIMENTAL ANALYSIS OF BAR STRUCTURES
Experiments permit to verify accuracy of taken assumptions for theories
and obtained analytical or computer results. For the same reasons the
author was starting his experimental researches.

The theoretical investigations of thin-walled bars and frames behaviour
were supported by some experiments presented in literature, where to
worthy of mention belong:

o experiments for single thin-walled bars with open cross-section,
executed by V.Z.Vlasov Ref 311 (1940),

o for thin-walled rolled bars with open cross-sections, led by
A.l.Strielbickaja, Refs 306-308 (1958, 1964, 1968),

o for straight cantilever beams with open or closed box type cross-
sections, J.B.Obrebski Ref 30 (1991), Ref 35 (1997) Figs 1-9,

o for plane frames composed of 2 or 3 bars, N.Jankowska (Ph.D. thesis,
supervised by J.B.Obrebski, Ref 282 (2006), Figs 14-16,

o for determination of critical bimoment value, (J.B.Obrebski with M.E.
El.Awadi, Egypt, Refs 82, 194, 203, 277 (1992, 1993) Figs 10-13.



In authors some papers, the attention was focused on electro-resistance
methods of measurements and on different approaches to elaboration of
obtained results. Moreover, there are compared results of investigations
presented in the book of A.l.Strielbitska and G.I. Jewsiejenko and the
other own measurements done much later together with S.Wichniewicz,
Z.Urbaniak, P.Flont, N.Jankowska and by A.Glinicka — all concerning of
some thin-walled elements used by designing of civil engineering
structures. There, are discussed applied methods of measurements,
manner and form of elaborated results. Special attention was turned on
advantages following of commercial program MS Excel application.

2.1. Behaviour of cantilever beams under combined loadings
The problem was discussed in some lectures presented by author in
period of years 1988-2004. Lately author was coming back to wider
elaboration of obtained very wide and numerous measured data.

The experiments, concern of cantilever beam behaviour under bending-
torsion loading. The outlook and scheme of experiment are given in the
Figs 1-6. As specimen were used of natural scale brazen thin-walled
bars with approximate dimensions 10x20x196cm with walls thicknesses
0.5mm, 1.5mm and 2.5mm. There were measured strains in two cross-
sections (in distance of 2 and 55cm from fastening), displacements and
load capacity of the bar. Moreover, behaviour of the bar was observed
and documented carefully. There were investigated 17 bars. From it, 13
with vertical position (as in Figs 3-6) and rectangular cross-section
(together with Z. Urbaniak) and 4 with horizontal orientation (together
with P. Flont, Ref 272). So, we can confirm, that before bar damage
(breaking) were appearing some waves by fixed point (Figs 4c,6-8,10c)
in both bar sides and in bottom wall. Some waves appear at loaded bar
end, where longitudinal displacements were constrained by rigid cork,
Figs 4C, 10c.

The electro-resistance measurements were executed by J.B. Obrebski
and Z. Urbaniak in years 1988-96 (Refs 75, 76,79, 81, 82, 83, 85, 119,
183, 195, 197) on series of 10 thin-walled cantilever beams with
rectangular cross-section mentioned above. Measurements were
executed by means of two manually operated electro-resistance
Wheatstone bridge devices with six distribution boxes for changing up
to 132 electric channels for particular sensors. Zeroing of electro-
resistance bridges for each sensor was done manually, rotating
handwheel. The readings were manually taken down to tables, with
columns for each loading level and rows for each sensor. In separate
tables for longitudinal, cirquital and for oblique sensors.

The beams were loaded up to breaking. Dependently on thickness of bar
walls were given loading levels: N=8-12 (brazen walls 0.5mm), N=13-
20 (walls 1.5mm), N=14-18 (walls 2.5mm) Ref 183.

The other experiments were performed by P.Flont (supervisor J.B.
Obrgbski), on 4 similar cantilever beams with identical cross-section
(thin-walled, open or closed). The longitudinal slit or closing were
placed at top Ref. 272. Applied schemes of beams were identical as in
previous, above experiments, Fig 4A. Results were elaborated manually.

Fig. 3. View on stand for bending-torsion loading of
rectangular cantilever brazen beam. Four steel frames helpful
by measurements of displacements are visible.
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Fig. 4. Scheme of experiment of the Figs 2,3. A) Two applied schemes
for cantilever beams: without constrains at free end a) and with planarly
constrained displacements b), with rectangular cross-sections: open c)
or closed d). B, C) Loading system for thin-walled bars.
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Fig. 5. Cantilever beam and electro-resistance (tissue paper) sensors
arrangement (detail A)

During this type of experiments, were carefully observed developments
of waves on side walls of bars, open and closed. Moreover, there were
measured: deflections, rotations, strains, load capacity. Next, were
compared calculated and measured values of bimoment.

Specially, interesting is photo of the Fig 8A, where are compared similar
four bars, with identical thickness of walls (0.5mm). Two of them have
open cross-section and bar opposite end (“free”- loaded), at all free or
constrained by cork. Similarly, two next bars had have closed cross-
section and bar opposite end free or constrained by cork, too.
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Fig. 6. A) Scheme of optical observation of circuital and longitudinal
displacements; B) visible: cantilever beam and steel frames; at left —
fastening and hinge (breaking point)

There is interesting different distance of breakings from fixed end (at
down) and its inclination. Here we shall remember that for open type
cross-sections, sectorial stresses are much higher. Simultaneously,
disposition of longitudinal normal stresses for bars with open and closed
cross-sections are dramatically other. Therefore, it results in other
behaviour of the bars, shown in the Fig 8A. Additionally, the positions
of hinge at lower edges of the bar can be explained by different
diagrams of bimoments, too. Now, it is not in details discussed.

Fig. 7. Cantilever beam with planarly constrained fixed and “free”
ends — zones of bimoment influence; a) waves by fastening on side and
lower bar walls; b), ¢) hinge (breaking point) from both sides of bar

1251 !15

[
7
: V// ]
a 05 o[mm] 5 11 Ix.s 05_8 [mm]
Bio™ 20 W H0g= P10 ™ 2w 0 toos:"g

Fig. 8. A) Accordingly to schemes shown in the Fig 4A, the distance
of lower part of hinge (breaking point) visible from down for all four
cases of the bars with identical wall thickness (0.5mm); B) proper
diagrams explaining positions of hinge at lower wall edges.

As consequence of above conclusions we obtain measured results of
similar bars load capacity given in Table 1. There, bar with open cross-
sectin obtain load capacity P,=45.143kg, (with boundary condition at
free bar end =0) higher than bar wit closed cross-section
Pn,=43.883kg (with boundary condition at free bar end @"'=0). It is
result of better boundary conditions of the first bar. Simultaneously, in
the Fig 9, are given comparative curves showing character of
dependences of bar load capacity on thickness & of its walls. It is
strongly nonlinear. We can draw conclusion, that by thicker bar walls,
influence of local instability is much smaller.

Table 1. Measured critical loadings (load carrying capacity) for
cantilevers with walls thickness 0.5mm, with open or closed cross-
sections, with free- or planarly constrained right end
Py, load capacity [kN]
(hanging mass [kg])
by given bar cross-section §=0.5 mm
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Fig. 9. Capacity of cantilever beams (see Table 1)



2.2. Measured torsional internal forces

It is worthy to explain, that after electro-resistance measurements of
strains, were calculated normal and shearing stresses, which applied in
Eqns (1) permits to determinate of measured bimoments B and bending-
torsion moments, given in Table 2 (J.B. Obrebski, Ref 94).

The bimoment and bending-torsion moment have among the others, two
following definitions:
B=§0'1£)dK=§0'a”)dSr M(L,:j.rnds ' €
expressed by: stream of normal stresses o or shearing stresses 7 and
its arm n. On basis of above formulae, J.B. Obregbski has calculated

measured experimentally bimoments and bending-torsion moments
presented in Table 2, Ref 94.

It is worthy to add, that shearing and normal stresses occurring in Eqns
(1) can be experimentally measured, or calculated by any method, e.g.
by FEM. This idea was used in Ph.D. dissertation of N.Jankowska,
Ref.282.

Table 2. Internal forces - himoments and bending-torsion moments
calculated analytically and measured, accordingly to Egns (1) (method
proposed by J.B.Obrebski)

Internal Model 21 Model 22
Force with open cross-section with closed cross-section
analytical measured analytical Measured
B [kNcm?] 831.82 848.475 -4.826 9.65
M, [kNem] | -10.1908 -2.175 2.189 3.35

2.3. Observed effects of bimoment

Bimoment belong to internal forces, unpopular by scientists and
engineers. For the reason of difficult its explanation, in most of books
and standards, is simply ignored. So it is important, to show
experimentally its existence and effects. Such observations were
undertaken by author.

Fig. 10. a,b, d) loading system for bimoment, Visible waves on free
longitudinal slits of: ¢) cantilever (visible strong steel cork); e) of bar
loaded by pure bimoment at lower end (four equilibred forces).

In this chapter, are presented mainly the photos of the experiments
performed in years 1988-1992 Refs 76, 79, 81, 82, 187, 195, 197 and
elaborated partially a little latter. Some observations concerning

observed phenomena were quoted in the books Refs 30, 35. Other
materials were not published up to the moment. There, were performed
two kinds of experiments, concerning cantilever beam and application
of pure bimoment loading. So, especially in zones, where is acting
bimoment, there were observed local instabilities of bars walls. Intensive
values of bimoment, specially appears in thin-walled bars with open
cross-sections, see Table 2. Therefore, in bars with open cross-section
and with thinner walls we observe more intensive waves. These easy
conclusions follow of the effects well visible in photos of the Figs 10c,e,
12,13.

2.3.1. Bar loaded by pure bimoment

In second type of experiments, bar was loaded by pure bimoment, only.
The experiment, concern of short rectangular bar, showed in the Figs
10d,e,11-13. Accordingly to scheme given in the Fig 10d, pure
bimoment was applied, at down. At the top of specimen, in each case
was applied rigid cork for constraining of longitudinal displacements
and for stiffening whole model. Besides of it, there were applied three
different type longitudinal slits: in the middle, in one quarter of wider
wall and in the bar corner, Figs 12,13. Moreover, there were applied
three cases of walls thicknesses: 0.5mm, 1.0mm, 1.5mm, see diagrams
in the Fig 11.

At certain value of bar loading P (Fig 10d) appears waves along slot,
Figs 10e,12,13. Besides of waving of slots edges, in each case were
observed certain rotations of the bars top end. In these series of
experiment, without any doubts, waves and critical loading were
resulting of the pure bimoment application, only. So, it all confirms the
thesis, that in the first type of experiments, bimoment is significantly
responsible for wavy effects on side walls and along slits, too.

There, were measured critical forces — which brings longitudinal waves
at longitudinal edges of open thin-walled bars. Next, critical bimoment
B was calculated accordingly to equation (13) similar to Eqn (1a).
Experimental results are compared in the diagram of the Fig 11, with
similar ones calculated analytically by means of formulae derived by
J.B.Obrebski in the book Ref 35.

For thinner bar walls, the convergence is enough good. For thicker bars,
differences of results are much bigger. Experimental curves show high
nonlinearity of the phenomenon. Contrary, the observed theoretical
values of By depends almost linearly on thickness of bar walls. In
reality, similar values obtained experimentally are higher and evidently
nonlinear.

So, we come to important conclusion, that bimoment as force really
exists and can be observed and calculated. Moreover, in any case it is
important, that the bimoment has its critical value which can be
measured and analytically calculated, with enough convergence!
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Fig. 11. Observation of critical bimoment (with M.E. El. Awadi,
Egypt, Refs 194, 195, 82 (1991, 1992) for short, rectangular bar,
with planarly constrained displacements by strong steel cork at top;
a), b) loading system by pure bimoment at bottom bar end; ¢) small
damage of supported corner; d) comparison of measured and
calculated critical bimoment.



2.3.2. Experimental examples of bimoment influence on instability
of thin-walled bars

All these experiments show high importance of torsion and bimoment in
single bars mechanics, and for frames, too. Similarly, this chapter
presents examples of visible bimoment influence on instability of thin-
walled bars — local and global. There, own experiments concern of the
bars loaded by pure bimoment or bended with torsion. Shown
photographs and drawings presents observed effects. In the light of these
experiments, the bimoment is evidently a real internal force, very
dangerous for structures, which should be seriously considered by
designing of objects composed of thin-walled bars.

2.4. Experiments on torsion thin-walled simple plane frames

The problem of computer analysis of space frames taking into
consideration of bimoments, too, was numerically investigated by some
authors. There, can be mentioned e.g. works by J.Rutecki Ref 303 (book
1957), J.H.Argyris and D.Radaj (1971), R.Dziewolski (IASS, Kielce
1973), J.B.Obrebski Refs 71,30 (1985, 1991), K.Grygierek (Ph.D.
dissertation, Gliwice, 2003), and C.Szymczak et al. Refs 308, 309
(2003). There, still is serious question about real behaviour of space bar
frames.

Therefore, N. Jankowska in she’s Ph.D. dissertation Ref 282 (supervised
by J.B.Obrebski), has investigated 8 models of simple thin-walled
frames, type L, T and Y, Figs 14, 15, 16. The frames were composed of
the 2 or 3 thin-walled bars, made of the brazen, connected with one
centralnode, only. By both ends of each bar, in distance of 2.5 cm were
glued 25 electro-resistance rosettes, Ref 282. Sensors in rosettes, were
oriented along, transversely and under angle 45° to bar axis. So, were noted
by computer strains in these directions and next, calculated proper normal,
shearing and principal stresses. There was applied very modern in that time
electronic bridge of the firm VISHAY, system 5000.

Fig. 12. The specimens, loaded in strength machine; visible . . o
three different type waves at free longitudinal edges of All together, were investigated 32 cross-sections, in it most of them placed

slit in middle of wider bar wall by central node.

with bars having external dimensions 10x20cm.

Next, were drawn proper diagrams, and calculated among the other,

Fig. 13. Visible three different type waves at free longitudinal edges
g P g g internal forces, associated with torsion: B —mimoment and o bending-

for bars with longitudinal slit on three positions of the wider wall



torsion moment, according to formulae (1), by method proposed by
J.B.Obrgbski. Some results are given in Table 3, Ref 282. So, The
transmition of bimoment through node and its dependence on node
rigidity was confirmed.

Nl

Figure 16. A) Electro-resistance measurements of L type thin-walled
frame, with box bars having external dimensions 10x20cm; at the left is
visible torsioning moment applied, only; B) electro-resistance
measurements of T type of thin-walled frame

Table 3. Measured bimoments (N. Jankowska Ref 282, Table 4.17)
- Frame type Li Frame type Ti Frame Yi
number of] 1 2 3 1 2 3 1 2
sheetsin| 1 | L2 | L3 | T2 | T2 | T3 | Y1 | Y2
central
node
C —active|-1364 | -1355 | -1259 ] -1495 | -1390 | -1339]-1413 | -1333
Cs

B-passive| -455 -285 | -261 | -241 | -322 | -285
Cs
E-passive 287 | 244 | 222 | 259 | 223
CS

It is important, that similar observation concerning of bimoments
transmission, obtained numerically by super-elements technique, was
reported by C.Szymczak et al. (see Refs 309, 310).

2.5. Application of commercial program MS Excell to elaboration
of experimental results

Lately, author come back to new complex elaboration of accessible own
and quoted in Ref 282 measurements data. This time it is lead by means of
commercial program MS Excel. For this purposes, were foreseen for each
model separate document and for each cross-section individual calculation
sheet. The shape of cross-section is there declared by coordinates (y,z) and
all necessary material and model data. Therefore, such program can be
applied for different types of cross-sections.

The MS Excell program is generating: all geometrical characteristics of
cross-section, internal forces, strains, normal and shearing stresses,
principal strains, angle of non-dilatational strain, principal stresses and its
inclination. All these information will be presented during LSCE 2009.

Before calculation, the measured data were interpolated for points assumed
in distance 1 cm each of the other. For points located on longitudinal free
edges, measured data were extrapolated linearly, by assumption that
shearing stresses 7,, and normal — circuital stresses O, are equal zero,
Refs 182, 183:

o-X:l_Vz(ga+Vgc) ' O'Z:%(gc+vga):o '
TXZ:G(Zgb—ga—gc):Oy @
or
g, =—ve, gb:gak?v . ©)]

So, longitudinal strains &, Were interpolated linearny, and remaining
strains: cirquital - &, and inclined by 45° - &, were calculated by means
of Eqns (3). Example of some obtained results is shown in the Fig 17.
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Fig. 17. Diagrams of measured strains for model No 11 with walls
thickness app. 1.5 mm, loaded by hanging mass 100 kg;
in cross-sections: a) 2 cm and b) 55cm from fastening
black lines — shape of cross-section,
red lines — longitudinal strains,
yellow lines — cirquital strains,
green lines — inclined strains.

2.6. Summary for experimental observations
After above discussion, on the ground of presented data and
photographs, we can drawn following simple conclusions:

a. bimoment is identically real internal force as: longitudinal one, a
shearing forces, and bending and torsion moments,

b. there can be calculated critical internal forces: longitudinal,
bending moments (associated with transversal critical loadings)
and bimoment (in consequence critical torsion moment) Refs 30,
35, 225, 227,

c. so, any type of bar loading can bring us to critical state of
loading,

d. by designing of bars should be taken into consideration all types
critical loadings, including combined loading, which can be easily
calculated and considered (see Refs 30, 35).

e. In experiments described in chapters 2.1 and 2.3 dependently on
particular thickness of walls were observed waves at other
position, Figs 4, 7, 8A, 10c, 12, 13. Explanation of this problem is
connected with bimoment activity, but now it is not wider
discussed.



3. NEW THEORIES
Theories applied in all elaborated own programs, were built successively
as it is given below. Each of them is shortly characterised as follow.

3.1. Theories for single straight bars

Considered bars can have any type of cross-sections (CSs): full or
thin-walled (TW) of open or closed type, homogenous or composite (as
e.g. in the Figs 18-20). Applying each of mentioned types of CSs,
different will be determination of bar rigidity, including torsion
properties, but global analysis of structures will be led by equilibrium
equations and physical relations for particular bar, formally the same. It
concern of all types of analyses: static, dynamics, stability and
dynamical stability, all with influences of surrounding media, as in the
books Refs 30,35.

It is suggested for CS composed of more than one material (composite)
as e.g. reinforced shown in the Figs 18-20, to calculate so called
reduced geometrical characteristics of the CSs, as it is given in the
Table 4. So, there are not problems with determination of such
characteristics associated with torsion: @max , |5, Ks(see Refs 30, 35)
and LSCE books). For example, deflections calculated for a beam with
the CS of the Fig 20a are 94,9% bigger than for the identical beam, but
with the CS of the Fig 20e (compare bold numbers in Table 4).

Geometrical characteristics of homogenous straight bar. In author’s
theories, generally the bars taken into consideration, can have the CSs
homogenous or composed of some materials. There, material form strips
or fibers disposed along the bar. The walls thickness around the CS
circuit can be variable, Obrebski Refs 16, 30, 32 (1989, 1991, 1999). In
the case of homogenous cross-sections, calculation of its area, center of
gravity, moments of inertia follows in traditional way. The difference
appears for composite-, perforated-, with lacings- and for multi-
branched bars. Below are commented the first two cases.

Geometrical characteristics of composite bars. As it follows of the
derivations of the theory, in the case of the CSs composed of some
materials, should be assumed for whole CS (for whole structure) general

Young’s modulus E — the best as for the strongest material.

It results in introduction of reduced elementary area dA=(E,/E)dA and
next reduced geometrical characteristics of cross-section e.g.: area A ,
moments of inertia |,, |3, warping (sectorial) moment of inertia |,
etc.

In consequence, there is calculated e.g. reduced center of gravity — a
little different of the traditional one. Certain example of calculated of
geometrical characteristics for five CSs of the Fig 20 are shown in the
Table 4. The first is homogenous, and next four have different number
of reinforcing bars. So, the bending rigidity of the reduced moments of
inertia, are growing. All the CSs are symmetrical, built of concrete and
steel bars. The torsion rigidity K is calculated, too.

It is very interesting, that for compact — full CSs, can be calculated their
geometrical characteristics, assuming, that whole bar is built of TW
tubes, located one into the other. Accuracy of calculated this way
characteristics are enough close to exact theoretical results (Obrebski
Ref 97). There are not problems with determination of such
characteristics associated with torsion as: @m, 1o, Ks(Obrebski Ref
30 (1991) and LSCE books Refs 31, 34-45(1995-2007)).

It is important, that by analysis of the bars with variable rigidity on their
length, applying numerical solutions by means of Finite Differences, in
particular CSs can be considered other characteristics.

Geometrical characteristics of perforated bars or with lacings. In the
case of perforated bars, with openings located along of the
longitudinal strips, material separating openings, is replaced by
hypothetical wall with new thickness and mechanical properties
(material modulus), but with identical mass and deformations as for
original part of the bar.

Further, the analysis is led as in whole theory for composite bar, Refs
30,32 (Obrebski 1991, 1999).
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Fig.19. a, d) Homogenous and b, d) composite (reinforced timber)
cross-sections
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Fig. 20. Cross-sections divided on thin-walled tubes with walls
thicknesses 1cm Refs 129, 236 (2000, 2002).

Table 4. Geometrical characteristics of the cross-sections of the Fig 20

CI’O_SS- A P I3 lo Ks Drmax @Dcorner

section
Ofthe Fig| cm®* | em* | em* | cm® | kNem? | cm® | Cm?
Figurela| 200 6666 | 1666 | 84196062276 | 15.268| 15.268
Figure1b| 218 8024 | 1898 12290 | 6190833 | 14.547| 13.296
Figure1c | 246| 10062 | 194220133 | 6422960 | 19.749| 18.559
Figure1d | 293| 12049 2219|26617 | 6663297 | 18.706 | 17.566
Figure le| 331| 12991 | 2494|28177| 6935002 | 17.461| 16.379

3.1.1. Uniform theory for thin-walled straight bars — possibilities
and advantages

The theory was elaborated firstly about 1980 and published by the
author in 1J Thin-Walled Structures Ref 16 (1989) and in the form of
the book as lecture notes of Warsaw University of Technology Ref 30
(with second edition in 1999 Ref 32) under title Thin-Walled Elastic
Straight Bars. Next it was extended in the book Strength of Materials
(Ref 35), and in numerous conference papers. The theoretical
derivations of the theory were supported by: many numerical
calculations of comparative tasks, students homeworks, serious
experimental investigations and by some problem-oriented own
programs. The theory is lectured on the Faculty of Civil Engineering of
Warsaw University of Technology since 1980.

The theory concern of the elastic thin-walled straight bars with any type
of cross-sections: open, closed with one or more circumferences and
open-closed. The CSs can be homogenous or composite — built of some
different materials. There are derived uniform equilibrium equations for
static, dynamics, stability and dynamical-stability, where are possible to
be considered interactions with surrounding media as air, water or soil.
So, range of structures analysis is here extremely wide and accuracy
much better. The theory is completed by following particular problems:



-clear and easy algorithms for determination of geometrical
characteristics of any thin-walled and full CSs, too (treated as set of
thin-walled tubes located each in the other),

-simple analysis of stresses for composite bars (one formulae for
normal stresses and one for shearing stresses),

- analysis of perforated bars or with lacings,

- calculation of critical combined loadings of any type, what brings the
problem to ultimate critical curves or surfaces (instability of bending,
torsion or bending-torsion character),

- there is possibility to calculate value of critical bimoment (Ref 35),
too (what was checked experimentally),

- new proposals for calculation of stresses for bars with any type of CS,
taking into consideration influence of its instability (see Eqns (24,25),

- theory of first and second order (including instability),

- theory of higher approximations — taking into consideration influence
of shearing stresses disposition, on bar deformations, on internal
forces and stresses,

- analysis of space frames by DMEM (see chapter 5.2.2), taking into
consideration of bimoment existence (see Table 5 and chapter 3.3),

- it was derived exact stiffness matrix of FEM for TW bar Ref 30,

- dynamical behaviour of bars under moving loading applying of 3D-
Time Space Method combined with Finite Differences approach
(applied to bridges, tall buildings, landing aircraft on airstrips,
highways etc).

The theory was extended on the bars with full CSs (see above). So,
independently on kind of CSs, the derived very general set of four
differential equilibrium equations, always is the same. There are
changed the values of calculated geometrical characteristics of bar CS
and its mass, only.

The theory was tested by experiments (are excellent photos and unique
results) and by FEM calculations, too. In each case were obtained
sufficient analogies (any kind of analysis can not to give at all exact
results).

Physical relations for straight bar. The internal forces, moment of
free torsion Ms, bimoment B, and bending-torsion moment M,
depends on the first, second and third order derivatives of the function
® describing of the bar longitudinal axial torsion angle (Eqgns (4)):

M,=K@® . B=-EI,®" M, =-EI 0" O
M1:MS+M12) . (5)

where: K,and Elare proper bar rigidity, (Obregbski Ref 30, 1991).
So, the sum of free torsion moment and bending-torsion moment gives
torsion moment - Eqn (5).

Besides above definitions of internal forces dependent on bar torsion
angle ®, in the theory were derived next expressions, (Obrebski Refs
30, 35 (1991, 1999)), given in Table 5, describing all internal forces for

bar with number A (1< A < N) and with length |, . There, are
introduced bar rigidities defined as follow:
EA, — K, El,, EL. (6
Koa :T Kin =K, Kaa :TZ Kaa :Ts ©)
A A A

More information can be found in the book of J.B.Obrebski Ref 30
(1991, 1999). It should be completed by information, that in theory for
space bar systems, were considered “finite dimensions of nodes” as in
the Fig 21, too.

In formulae given un Table 5, coefficients C; and C;" are calculated
from expressions dependent on bar boundary conditions at both bar
ends and on kind of analysis: static, dynamics etc. Ref 11. Symbol
%, =0, and Boole’s operator E, indicate the other end of the bar and
its orientation in space (see Eqns 27, 28).

Table 5: Physical relations for internal forces for straight bar

Internal forces in cross-sections by nodes
Longitudinal and shearing forces

a)| Tia = Koa (CoE, —Cipviy

K —, =, 1 -, —,
b)| Ton = IBA |:(C5 +Cs'E\ )3, +T(C7 E,+Cg )VZA}

A A

K R — 1, = —
Q)| Tan =— 2 |:(Cs +CsEL )30 +T(C7 E. +C8)V3A}
A

I/\

Torsional and bending moments and bimoment
d)| My, =Ky, [(CIQEA —Cyo)p, —(C,E, _sz)‘gm]

_ 1 — _
)| Mgy :7KZA|:(C1 +C,E )P4 7T(C3EA +C4)V3A}
A

- Lc o
f) | My, :_Ks/{(cl +C, ' EN) s +T(C3 E,+C, )VZA:|
A

9)| By =Ky, [(623 + 624EA )P, — (625EA + 626)‘91A]

On the basis of formulae describing internal forces, given in Table 5, in
natural way was composed stiffness matrix of FEM for straight
prismatic bar with practically any type of CS, Ref 30. The one only
stiffness matrix is valid for different bars with any boundary conditions
for all three functions describing deformed axis of the bar and for any
kind of analysis. There, for particular bar and any applied range of

analysis, the coefficients C; and C,'should be calculated in the other
way, only, Ref 11.

The formulae in Table 5 were used by DMEM and for FEM (above) -
for stiffness matrix of single bar, both elaborated by Obrebski, Refs 11,
30, (1991). Moreover, identical formulae can be applied for any bar
with full or TW (open, closed, open-closed) CSs, Obrebski Ref 30 and
LSCE 1995-2006.

In formulae d) and g) in the Table 5, we recognize other expression for
the same torsion forces as in Eqns (1, 4, 5). It is now, yet once well
visible, that torsion moment d) and bimoment g) depends on the
same displacements, and therefore, they appear always together!
This time, there are taken into account, bar boundary conditions. So, in
the case of elastic behaviour of nodes, should be modified the
coefficients 6. orC,to formulae of the Table 5.

Equations of motion. In discussed theory, were derived very general
equations of motion taking into consideration theory of second order
and interaction of the bar with surrounding media, Obrebski Refs 16,
30, 32 (1989, 1991, 1999).

The equilibrium equations for static or equations of motion for the
theory of first order are the special - simplified cases of general
equations. Only omitting proper terms, we create expected type of
analysis, sometime truly unusual. Especially, it can be very advanced
tasks, when we take into consideration interactions with surrounding
media (three parametrical) — acting simultaneously, but independently
in three directions.

Theory of second order can use whole — large set of equation or
simplified its version, dependently on character of the considered task.
Accordingly to type of loading, it can be calculated displacements for
static or for forced vibrations in dynamics. It can permit to determinate
critical configuration of loading (combined), too.

More on basic relations of theory for single straight bar. Above,
were given essential definitions of theory for tw bars. Now, we observe,
that internal forces, moment of free torsion ms, bimoment b, and
bending-torsion moment M, are described by: first, second and third
order derivatives of the function @ - of the bar longitudinal axial
torsion angle (Eqns (4)), (Ref 30, J.B.Obrebski 1991).



Sum of free torsion moment and bending-torsion moment gives torsion
moment Eqn (5).

Similarly, formulae on longitudinal displacements, strains and stresses,
are together dependent on @ as in formulae:

U =V, =V, ', —V', —0'@

& =U'=V'=V, ", — Vi - @@ ™)

o, =Ee = E[V1'7V2“772 —V;"'r, 76”6)] '
where new symbols means: vi and ® — means displacements and
longitudinal rotation of bar axis (around shearing centre), 7,, 13-
coordinates. All above quantities depend on bar torsion @ .
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Fig. 21. Nodes with real — , finie dimensions” (see Ref 11 and Fig 55)

Analysis of simple structures built of thin-walled bars. Determina-
tion of internal forces for set of thin-walled bars or even critical
combined loading belong to rather difficult tasks. For single straight
bars it is possible to obtain exact solutions. Much difficult is matter of
analysis for frames and especially for space bar structures.

The analytical solutions concern rather very simple tasks with simple
system of loading and easy boundary conditions. There are some
mathematical problems with solution of some sets of differential
equations. Moreover, for the long bars, especially with closed CSs are
problems with hyperbolic functions sinh x and cosh x (x>224).
Actually, in comparison with numerical analyses based on FEM, FDM
and DMEM, such solutions are rather not competitive. As profitable
side of analytical method is existence of some closed formulae for
determination of internal forces in the bar. Contrary, as weak side of
such solutions, is to simple information about stresses and
displacements distribution.

Fig. 22. Types of cross-sections foreseen in WDKM computer system
for automatic dimensioning of bars (see Fig 70, too), Ref 11.

3.1.2. Theory for solid straight bars
In the book Ref 35 (1997) the uniform theory for straight bars with any
cross-section was given. It is worthy to point CSs possible to be used in
WDKM program system, Fig 22, too. Additionally it was investigated,
extended and verified in many next papers. The theory has identical as
for thin-walled bars (Ref 30, 32):

- equations of motion (equilibrium equations),

- formulae for displacements of the bar,

- formulae for stresses calculation (if no torsion — traditional),

- all solutions for static, dynamics, stability and dynamical stability.
The only differences concern of calculation:

- geometrical characteristics of cross-sections,

- rigidities of the bar including interactions with surrounding media.

3.1.3. Application of Finite Differences to analysis of complicated
tasks

It was truth discovery, that this method can be still young, very effective
and still competitive in certain applications, to FEM. It permit to
analyze very complicated and real tasks with arbitrary boundary
conditions, with variable rigidity on the bar length and bars under action
of much more complicated external loadings.

Thanks of proposed application of Finite Differences Method for
solving equilibrium or motion equations or their sets, are open
possibilities to consider: very complicated systems of bars (Figs 22, 70),
boundary conditions, combined loadings, very long bars, any type of
interaction of bar with surrounding media etc. There is no problem with
well known limitation of argument for hyperbolic functions sinh(x) and
cosh(x). This way, the extremely advanced theory can be in whole range
applied for plenty of complicated tasks, such, which were not possible
to be solved previously.

So. the method can be applied to determination of the internal forces,
displacements, critical combined loadings, etc. Moreover, the FDM uses
the stiffness matrix of the structure in many cases much smaller than by
Finite Element Method. This way, solutions can be obtained even by
MS Excel for some enouhgly big tasks, where besides of essential
calculations, proper diagrams can be drawn.

Applying FDM, any task, which has theoretical solution in the form of
differential equations, can be transformed to Finite Differences
Operators (FDO), ever in the polynomial shape:

Cr(Aro-'—Zn:ArAEqu)r =Qr ' (8)

where, the symbols A and C means proper coefficients, e.g. Refs 155,
210, 223, 232, 249.

In result we come to solution of Eqn (9):

Kx=Q , 9)

where unknown displacements x are determined, by given set of nodal
forces Q and K — stiffness matrix of whole structure.

We can risk of thesis, that this method can give the same and even better
results than theoretical ones and even as Finite Elements Method, too.
There is possible to analyse the structures using:
- the highest quality differential equations transformed to FDO,
- easy in application program MRS (author J.B.Obrebski),
there for one ,,node” can be used sets of equilibrium equations;
for example for straight bars four equations.

This way, by this method we can start from differential exact physical
relations and to have the same number of unknown displacements on
“node” as when applying FEM.

3.2. Theory for plane hexagonal structures
Some interesting tasks were solved in author’s Ph.D. dissertation, Refs
1-5 (1971, 1972). There, were derived equilibrium equations and proper
elements of geometry for following structures:

- circular plane hexagonal grid, Figs 26-31, Refs 1, 2, 4,

- double-layer plane space bar truss type | (Fig 32, Refs 1, 2, 4),

- double-layer plane space bar truss type Il (Fig 33, Refs 3, 4),

- cylindrical double-layer space bar truss type 1l (Fig 34, Refs 3, 4),



Fig. 23. Definition of cylindrical net of points, Ref 4.

There, were derived equilibrium equations of repeatable nodes and
proper elements of geometry, e.g. Figs 23-25. Moreother, there was
defined special mathematical calculus for solving analytically sets of
finite differences equations with functional a,; - exponents of Boolea’s
operators (compare Eqns 27, 28)).

In result, for plane hexagonal grids, were found closed expressions
defining internal forces and deflections, shown in the Figs 26-31.

Similarly, for double layer trusses, solution and analysis of numerical
efficiency of some approaches, were done in Refs 4, 5, for some
structures shown in the Figs 32-34.

Fig. 24. Example of double layer structure inscribed to cylindrical net.
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Fig. 25. Example of double layer structure inscribed to spherical net.
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Fig. 26. Hexagonal band plate grid - considered schemes and loadings.
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Fig. 27.Deflections of hexagonal band grid should be multiplied by %
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Fig. 28. Bending moments of hexagonal band grid should be multiplied
by PL
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Fig. 29. Circular hexagonal plane grid in inclined net of points.
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Fig. 31. Bending moments for circular grid.
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Fig. 32. Double layer hexagonal truss type I; continuous lines means
bars in layers, dash & doted lines means bracings. Underlined numbers
are refered to lower nodes.
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Fig. 33. Double layer hexagonal truss type II; continuous lines means
bars in upper layer, dashed — lower layer, dash & doted lines means
bracings.

3.3. Theory for any space bar structures

On analysis of space frames. Besides of discussion of single bars and
elementary frames mechanics, highly important and extremely difficult,
is problems connected with analysis of large space bar frames.
Therefore, next theories oriented on analysis of such structures should
be mentioned.

There, we can recognised certain tendencies to consider equilibrium of
bimoments acting on nodes as sum of: algebraic, scalars, or vector
character; with different interpretation.

They were elaborated by: J.Rutecki, certain general proposal, only, Ref
303 (1957); FEM application by J.H.Argyris and D.Radaj 1971;
R.Dziewolski -for large roofs space bar structures (IASS, Kielce,
Poland1973); J.B.Obrebski -for any large, complicated space bar
systems, including frames Refs 71, 30 (1985, 91); F.Romanéw 1988;
K.Magnucki and W.Szyc, 1997; C.Szymczak et al. (application of FEM
combined with super-elements) Refs 308, 309 (2003), K.Grygierek
2003 (Ph.D. thesis - FEM with seven degrees of freedom in node), etc.

To the approaches, in which bimoment was treated as vector, often in
different ways, belong elaborated by: J.Rutecki, J.H.Argyris and
D.Radaj, R.Dziewolski, J.B.Obrebski, C.Szymczak.

For dynamics of bridges under moving loadings, is recommended 3D-
Time Space Method by Finite Differences Method, J.B.Obrebski &
R.Szmit Ref 223 (2000), J.B.Obrebski e.g. Refs 232, 237, 238, 240, 241
(2002-2004). Its application is extremely efficient, but not to the end
exact (dependent mainly on applied space division). The methods
belong to displacement method, too.

The author’s scientific investigations were led from 1969 till now, step
by step in sequence, from space bar structures Refs 1-16, through thin-
walled bars and bars with any cross-section Ref 30, over strength of any
straight bars with any cross-section Ref 35, to stability and dynamical
stability of various types bars, plates etc. — specially with moving
loading by any manner (history) of its disposition in 3D space and in
time.

This theory is elaborated for large space bar structures. It can be applied
to discussed in chapter 3.2 plane hexagonal grids, or to any complicated
space bar systems, but applying computers, e.g. Refs 11, 28, 29, Figs
45-52,

The paper, for reason of it’s to big volume, is limited to main topics
mentioned above.

Fig. 34. Double layer hexagonal truss type Il; continuous lines means
bars in layers, dashed — lines means bracings.

Vector interpretation of internal forces. It is worthy to turn the
attention on proposal for any large, complicated space bar systems,
including frames, J.B.Obrebski Refs 71, 30, 32 (1985, 1991). The
approach is based on vector interpretation of all internal — cross-
sectional forces including bimoment and bending-torsion moment,
follows in natural way from theory of TW bars, where B and M, are
collinear with longitudinal bar axis of shearing centres of CSs. There,
equilibrium equations of node are derived on basis of vectorial
equilibrium of forces. It brings task to approach based on FEM or
DMEM (Difference-Matrix Equation Method - elaborated by
Obrebski), both destined for structures composed of many bars with any
type CSs and with any boundary conditions for each of four
displacement functions. It concern of bars under any type of combined
loading, in range of static, dynamics, theory of first and second order,
too. The method seems to be the most exact for space frames, where
bimoments as internal forces are calculated, too (Refs 30, 32).

More on vectorial equations. It is now evident, that all formulae of
theory for bar structures can be considered as certain vectorial
expressions. For example, previous formulae (4, 5, 7, 15) can be written
in vectorial interpretation, e.g.:
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This matter as evident, therefore will be here not continued.

Analysis of space frames. As it is well known, the problem is
extremely difficult and probably exact solutions by application of bars
model to 3D type tasks, is impossible. However presented below
approach, based on idea of vector sum of all forces acting on node,
seems to be actually the best.

Some vectorial equations. Obrebski in Refs 71, 28, 29, 30, 178 (1985-
2007) has shown derivations of theory, which indicates possibility to
interpret all internal cross-sectional forces as vectors, including
bimoment and bending-torsion moment, too. In consequence it was
given proposal to consider equilibrium of forces acting on node as
vector sums of proper forces, moments and bimoments. This assumption
brings us to three following vectorial equations (Rutecki, Ref 303
(1957), Obrebski Ref 71 (1985)):
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Each of above internal force can be expressed by basis vectors ty;
collinear with bar longitudinal axis and with both principal axes of its
CS, together with the values of internal forces calculated by means of
formulae of the Table 5, Refs 11, 28, 29, 30:

TAi :fAiTi ! MAi :fAiMi ! B/\i :fAi Bi : an
After projection of above three vectorial equations on three directions
(r=1,2,3) of local (nodal) reference coordinates, we obtain nine

equilibrium equations of node:

iit;\irTiA +F =0, iitAirMiA +M, =0, ZitAirBiA +M, =0.(12)

N
A=l Q=1 A=l i=1 A=l i=1

Using here expressions of Table 5 (physical bar relations
displacement—force), and after some derivations, we come to DMEM.
There, are nine equilibrium equations with nine degrees of freedom. For
the reason of strong dependences between bimoment (Table 5g) and
torsion moment (Table 5d), equations (9); and (9)s should be used
always together. So, (9)s can be regarded as additional conditions to
equilibrium of moments (19),. In practical calculations the equations
(10), are dominating.

In all author’s theories and programs, were used equilibrium equations
derived from condition, that vector sum of all forces acting on node is
equal zero (see Eqgns (7-9). In result in computer programs, as central
point of algorithm is foreseen solution of linear algebraic set of
equations, written in the form of well known Eqn (9).

Extension of this approach, step by step gives works Refs 11, 184-186,
190 etc. There, bars of the space structures can be pin joined (truss) or
fully rigid (frame) or with practically any boundary conditions at the
nodes. Analysis can concern static, dynamics and in certain range
stability of structural systems. On the basis of this theory were gradually
elaborated programs KM, KMTp, KMTg, WDKM (Ref 11) and SPES
(Refs 217, 233, 279). There, was used original method of stiffness matrix
composition called as Difference-Matrix Equation Method (DMEM). The
square matrix K for Egn (9) is built always by means of matrix type

equation describing equilibrium of whole node of considered structure:
N
SWI+WE)x=q - (13)
A=l

Symbols W and w, are matrices with dimensions 2x2, 3x3 or 6x6,

dependently on task type. When scheme of structure is more
complicated - of mixed type, dimensions of these matrices can be 2x3,
3x6, 6x3 etc. (Ref 28, 29). Here, in nodes are assumed identical
numbers of degrees of freedom as in FEM. Often physical relations for
particular bars are here more precise and for all kinds and ranges of
analyses are written in the same manner Refs 136, 146. It permits to
obtain almost exact numerical solutions.

3.4. Torsion in analysis of bar structures

The problem concerning of analysis of space bar structures is extremely
interesting, difficult and of the highest scientific importance. The
chapter presents results of the theoretical, numerical and experimental
investigations, of previous authors and own, too. It is oriented rather on
foundations of theory, on numerical calculations and efficiency of
applied methods. It gives certain historical review of theories in domain
and tries to show state-of-the-art of research works in the field of
computer analysis of space frames composed of thin-walled or with full
cross-sections straight composite bars. It recommends vectorial
interpretation of bimoments for analysis of space bar structures.

Below is presented certain resume of many observation following of
experiences concerning specially a torsion effects in analysis of bar
structures. There are considered five essential topics:

- properties (including torsion rigidity) of bars used in structures;

- experimental observation of torsion influence on structures behaviour;
- analytical determination of critical bars loading;

- torsion in analysis of space bar structures;

- and at last — part of torsion by stresses calculation.

It is shown, that on all above designing steps, applying nowadays

approaches can be generated remarkable or even terrible errors.

Contrary, by application of proposed approaches, they can be essentially

reduced. For above reasons, there is recommended application of some

theories developed by author, concerning of:

- bars torsion, including homogenous-, composite and thin-walled
(TW) with open or with closed cross-sections (CS);

- vectorial approach to composition of equilibrium equation of nodes
for space bar structures;

- application of uniform criterion for bar instability even for combined
bars loading;

- and at last, common approach to stresses calculation for any type bars
— even with composite CSs.

More essential formulae. The main subject of this paper is to show
some observations concerning effects generated by internal force called
as bimoment B. It is defined accordingly to theory of TW bars in three
ways Refs 30, 35: by means of Eqns (1)1 (4)2 and as below:

B=>Pa,: (14)

where: @ - generalized sectorial coordinate of force P, position.

Simultaneously, bending-torsion moment as a main part of bar torsion

moment is defined by Eqn (4)s .

So, from definitions Eqns (4) connected by ©, follow next

observations:

- when torsion exist, in bar are observed torsion moment and
bimoment, together,

- when is applied bimoment, should be observed bar torsion and as
internal force can occur torsion moment (when torsion is
constrained),

- when torsion moment is applied, should be observed bar torsion and as
internal force can occur bimoment (when longitudinal displacements
are constrained).



Torsion in analysis of space bar frames —review and discussion. It is
worthy to show certain historical review of theories in this domain and
to give short state-of-the-art of research works in the field. It concern of
computer analysis of space bar frames composed of TW or with full
CSs straight composite bars. It recommends vectorial interpretation of
bimoments.

The torsion of single bars and space frames are discussed. There, can be
mentioned first theoretical solutions of de Saint-Venant for free torsion
of prismatic bar, Prandtl’s membrane analogy or solutions by
S.P.Timoshenko for bars with rectangular or triangular CS.

Next, it should be mentioned theory for thin-walled (TW) homogenous
straight bars by A.A.Umansky 1939; with open CS by V.Z.Vlasov Ref
310 (1940), K. Roik, Carl and J. Lindner 1972, W. Gutkowski 1973,
C.F.Kollbrunner and N. Hajdin 1975, T. Lewinski 2005 etc.

The Vlasov’s theory Ref 310 was extended by J.B.Obrebski Refs 30, 35
(1991, 1997) on composite bars with any CS. It provides own original
theory for bars with TW or full CSs, homogenous or composite,
presented in two books and lectured on Warsaw University of
Technology. It is discussed below mainly. It can concern of any straight
bars with any CSs: polygonal tubes, box girders with one or a few
circuits, rolled and coldly formed bars, etc. (e.g. Figs 22, 70).

Own proposal makes possible to apply theory for any bar structures
made of each kind of material as wood, steel, aluminium, glass,
different composites, reinforced concrete etc.

Next, in literature it can be found different approaches to analysis of bar
frames. In most cases it concern of simple plane frames. The main topic
of the next chapters’ concern analysis of space frames taking torsion
into consideration.

Torsional forces for single straight bar. With torsion are associated
such internal forces as bimoment and bending-torsion moment,
responsible for: warping of the particular CSs; for global warping of the
whole bar by bending or by instability and at last on warping stresses —
which can obtain very significant values. Torsion has strong influence
on values of critical loadings, by combined loading, too. By combined
loading of the bar appear all internal forces: bending moments,
longitudinal and shearing ones and bimoments.

Our discussions should be started from differential equilibrium equation
(15), one of the four (given here in the simplest form, Ref 30),
responsible for bar torsion. There, function @ describing of
longitudinal axial torsion angle is dependent on external loading —
continuous torsioning moment m, on external bimoment  and on bar
boundary conditions:

El, 0" -K@"'=m, +b" (15)

In theory of the second order it is well visible, that set of four
equilibrium equations of single bar (extended version of Eqn (15)
dependents on longitudinal forces on transversal loadings and on
bending moments, too (Ref 30, J.B.Obr¢bski, 1991).

Numerical example of torsion for straight bar. The example concern
of straight TW bar with the length I=400cm and any CS. It is made of
steel with properties of material E=205GPa, (E;=225,27 GPa),
G=80GPa, v =0,3. At both ends it has torsion freely constrained
(@=0©"=0), Fig 35a. The task was solved analytically and
numerically — applying DMEM (see chapter 5.2.2 and Ref 30).

By analytical solution it were used eight boundary conditions (2x4)
for two bar sections AC and CB. On each of section were used other
torsion function: @(;) and @(,7). The used boundary conditions are

shown in Table 6, (a=b=0.5l). So, at central node, Fig 35b, condition of

identical warping normal stresses (Table 6, position 3) bring us to
equality of bimoments (Mutermilch & Kociotek 1964, and Ref 30):

B(a)=B(a) (16)

or to equality of second order derivatives for torsion angles

®"'(@)=0"(a) -seeTable6.
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Fig. 35. a)Bar torsioned by concentrated moment; b) central node;
c) calculated internal forces.

After calculations, we obtain results as in the Figure 35c. There is well
visible equilibrium of bimoment on whole length of the bar.

Table 6. Boundary conditions

Section Node C Section CB
AC n=a= 0.51 n= |

n=0
116(0)=0 O(a) = O(a) el =0
210"(0)=0 y,(as)=0,(as) O ©()=0'(a) | ©"'(1)=0
3 0,(8,8) =5,,(a,3) O ©"(a)=0"(a)
4 M +M,(s) = M,(s) O

M -EI,0"(a) =-Ei,,0"(a)

Example of plane frame loaded by single moment. The frame
consists of two steel bars of box type with CS having dimensions
20x10cm and walls thickness 0.5cm, Ref 30. Properties of material are:
E=205GPa, (E;=225,27GPa), G=80GPa, v =0,3. At both ends - A and
C, it has torsion (® =®'=0) and all displacements fully constrained,
Fig 36a. The length of both bars is 100cm. By such conditions, were
searched displacements of node B, determined analytically, too. There
bar BC is almost bended, only; and bar BA mainly torsioned. Obtained
results are visible in the Fig 36b. The same results are visible in Table 7.

E=205GPa
{ =100 cm

A=092cm

20cm

T,= 0,006208M
T,=0006208 M ‘ 1=
b) My = 0,1409M

M;=0,32189733 M T e M, =0,68686692 M
<— —dM 27
M

— e
8,=08552 B
M, =0,1409M

Fig. 36. Plane frame torsioned by concentrated moment, Ref 30.



Table 7. Internal forces in frame of the Figure 36, Ref 30.
Solution by DMEM Traditional solution

Force BC BA BC BA
T, | -0.006208M | 0.006208M | -0.006181M | 0.006181M
M. -0.1409M | 0.32189733M | -0.1422M | 0.3180M
M, | 0.68686692M | -0.1400M | 0.6819M | -0.1422M
B. | 0.0000000213M | -0.8552M

So, checking equilibrium of node obtained by DMEM we see:
a) shearing forces T3 have ideal equilibrium;
b) in direction BC bending moments are in equilibrium with torsion
moment:
0.1409M -0.1409M= 0;

c) in direction BA bending moments and torsion moments have
almost good equilibrium:
1M-0.32189733M-0.68686692M= -0.00876425M ,

d) bimoments are not here in equilibrium:
0.8552M # 0 and 0.0000000213M # 0.

This way we obtain result, that bimoments alone, are not in equilibrium
in node B. This confirm thesis of the paper Ref 310, that it is no
equilibrium of bimoments in node (page 399, row 4 from down).

But, if we look on physical sense of the task, we should agree, that in
bar BA we have strong torsion generated by external moment and there
should appear strong bimoment. Similarly in the bar BC we shell not
expect of torsion. In fact, the torsion is much smaller and there
bimoment almost does not exists.

In this example, we shell remember, that:

- this task have conditions proper rather for theory of second order,
where node by analysis show certain deflection,

- there, was used particular bar model with planarly (fully)
constrained both ends (®'= 0 - rigid node). By numerical analysis,
it is difficult by such approach to introduce for box type thin-walled
bar model and node, elastically constrained displacements (here in
node B, compare Refs 308, 309). Solution of this task can be done by
proper definition of coefficients C; or C;' to formulae of the Table 5.
This matter is worthy for separate paper.

However, we shell remember, that in task of the Fig 35, the same
procedure gives full equilibrium of central node.

It should be remembered, that mechanical behaviour of structures,
especially thin-walled, strongly depends on construction of nodes
(boundary conditions), Ref 9.

Numerical analysis by FEM

At the end, it is necessary to comment accuracy of space bar frames
analyses, by means of commercial computer systems. Generally, we can
conclude, that they are to simply. Normally, in literature are reported the
finite elements with six displacements per node, with only one following
term in stiffness matrix, only, which describe bar torsion:

(an

Contrary, in the book Ref 30 was derived exact finite element for thin-
walled bar on the ground of bar physical relations presented in the Table
5. There, torsion moment and bimoment depend on two coefficients
related to bar torsion angle and its derivative. This approach answer at
all to vector character of the task, as in example of the Fig 36.

Part of torsion by stresses calculation. In the book, Ref 30, are
presented following formulae for calculation of shearing and normal
stresses for composite bars:

1 (Tz S, . TS, ng{bj' (18)

Ty =T ——=| = +t—+—

s, I, l,

0-1:5 L—Llinz +7Mi773 +Bjc?) : (19)
ELA 1, , 1,

Moreover, it is proposed to be applied additionally Huber-Mises-
Hencky hypothesis, similarly as in previous Polish standards for steel
structures:

Oy =402 +37,.° <aR: (20)

Summary for torsion phenomena. The paper gives only short
comments to principal theories — more frequently applied, to ideas, its
advantages, problems and week sides, too. But it is clear, that even in so
wide text and not long presentation, some topics can be reported, only.

The paper recommends taking torsion into consideration on all stages of
designing process. Especially important is approach based on vectorial
equilibrium of all forces acting on space frames nodes, including
bimoment, too. It seems to be nowadays the most exact form of its
analysis, when we use one finite element or physical relations for whole
bar as its model (one bar — one finite element or one set of physical
relations).

There, we can recognize following advantages:

- it is possible to be applied by any kind of analysis (static, dynamics,
theory of second order, etc.,

- there, are possible declarations of the bars different boundary
conditions, for four displacement functions: U, U,,U;, ©
J.B.Obrebski, Refs 30, 32 (1991, 99),

- as result of numerical analysis we obtain as internal forces
bimoments, too (responsible by torsion for significant or sometimes
dominating warping stresses),

- the method (by DMEM or by FEM) enables numerical analysis of
space frames or continuous beams,

- for continuous beams (e.g. bridges) obtained numerically bimoments
are at all exact!; for space frames results can have certain accuracy
following of problems with definition of nodes deformation,

- by numerical analysis it is the most difficult problem to take into
consideration real, elastic behaviour of nodes (its deformability),
but it is possible to be easy considered improving coefficients C; or
C,' (Table 5). This will be discussed in nearest future.

3.5. Stability of structures

Instability of the TW or any type of the bar can be observed by any kind
of loading: longitudinal compressing or even tensioning forces, by
bending, by torsion moment and by bimoment, too (see Figs 10-13).
There, is proposed uniform criterion for instability of any kind of
structures.

3.5.1. Short review of old well known analytical methods
If we carefully observe classical, well known solutions presented from
years in all academic books for Strength of Materials and for Structural
Mechanics, we can come to following conclusion. In such all tasks:
- bending type of Euler’s critical force e.g. Refs 30, 129, 300,
- instability of bending-torsion or torsion type, only — V.Z. Vlasov
Ref 310,
- problem of frequency of free vibrations - W.Nowacki Ref 300, 301,
- task of critical loadings of simple frames - W.Nowacki Ref 301,
J.B.Obrebski Fig 41C,
- dynamical stability of simple bar structures - J.B.Obrebski Fig 12
Ref 30,
as central point of calculations, was used conditions - comparing to zero
main determinant of stiffness matrix or similar one, called as stability
matrix of whole structure. It confirm some new, own analytical solutions
which were executed applying computer methods, too.



3.5.2 Uniform criterion for instability of structures

The present chapter gives certain summary of three previous lectures
presented on Structures Instability Symposia in Ref 105 (1997), Ref 129
(2000) and Ref 170 (2006) in Zakopane. As efficient criterion of
structures instability is considered comparison to zero of main
determinant of whole structure - its stiffness matrix , Eqn (21).
Simultaneously, the same criterion is fulfilled when structure is
geometrically changeable. In mentioned papers all examples where
concerning of tasks with loading acting on given positions. Next, were
shown efficient applications of this criterion to moving loadings, too
Refs 238, 241,256.

Mentioned criterion has very simple form:
det(K)=0 , (21)

where, K is simply a main determinant of a set of equations describing
equilibrium or simply in other words - stiffness matrix of the whole
structure. In some approaches for particular tasks the matrix K can be
built in some other ways. For example it can be built analytically (e.g.
Refs 298, 300, 301, 310, 30, 45) as a stiffness matrix of FEM or
composed by finite differences (e.g. Refs 235, 236, 136). On the basis
of the above thesis, the following two conclusions were drawn:

1) The structure which in an unloaded state has its scheme geometrically
unchangeable, where det(K)#0, can under a certain combination of
loading P with frequencies of free vibrations ® and/or given
support displacements, reach a state when

det[K(P,w)]=0, (22)

which implies the state of the instability of the structure and the
possibility of obtaining a mechanism of motion, similar to
geometrically changeable behaviour.

2) In each case when the main determinant of the stiffness matrix
det(K)=0, it means that the structure has the possibility of reaching
the mechanism of motion. For an unloaded structure it means
geometrical changeability of its scheme and for a loaded, stable
structure — a state of critical loading. The Eqn (22) is a particular
case of criterion (21).

The conclusions described above are valid for the problems of:

- any kind of analysis: static, dynamics, stability and dynamical
stability,

- any type of loading: static or dynamical, with any kind of
structure interaction with the external media,

- any type of analysis: - analytical solutions of equilibrium
equations, - analytical solutions of finite differences equilibrium
equations, - in numerical displacements methods: of FEM (Finite
Elements-), FDM (Finite Differences-), DMEM (Difference
Matrix Equations-) or 3D-TSM (3 Dimensional and Time Space
Method).

Now, we can revise well known solutions in the light of conditions -
Eqgns (21, 22) and then present own tests. It can be enumerated the
simplest tasks, starting from Euler’s, through bending-, bending-torsion
and torsion, only, types of instability, from single straight bars to critical
loadings of large space bar structures. In the same way various types of
tasks for dynamical instability of bridges under moving loading (cars,
aircrafts) were considered. Now we can say, that such solutions were
obtained using the well known 3D-TS method. Examples of numerical
results for some of the author’s own tests are given below.

General remarks to application of uniform criterion for instability
of structures. It can be shown some examples of application, of the
general, uniform criterion of structures instability — Eqn (21, 22). In all
calculated examples, applying FEM, FDM, DMEM and 3D-TSM, this
condition was giving enough exact result. It seems that this condition is
not only necessary, but sufficient, too. There is possible to calculate:
first or higher values of critical forces or critical sets of forces; modes of

instability for investigated structures — its shape in all considered time
moments; associated with deformations internal forces, bending-,
bending-torsion or only torsion type instability, etc.

The method can be applied to wide class of tasks concerning static,
dynamics, stability, dynamical stability concerning various structures,
including composite ones.

3.5.3. Determination of critical force using Finite Differences
There, various approaches to numerical application of FDM are
possible, but the equilibrium equation of the whole structure always has
the shape Kx=Q , where: K - stiffness matrix of the whole structure,
X - vector of node displacements, Q -vector of external loadings. It is
always a set of linear algebraic equations. Its solution belongs to
elementary numerical tasks. By the process of unknowns x
determination, using Gaussian eliminations, the value of = D=det(K)
can be additionally (by the way) calculated.

By this description determination of critical forces follows condition
(21). There we look for the value of the determinant of stiffness matrix
D=det(K)=0. In general, it depends on the values of some chosen
variable parameters. So, critical combined loading can be different by
certain combinations of some parameters and shall fulfill the condition
as below:

det[K(P,w,v,a,M,m,d,t)]=0 , (23)

where: P — system of one or more forces, ® — frequency of free
vibrations, v — loading velocities, a —acceleration of loadings, M —
moving masses, m —mass of structure, d — dumping conditions, t —time
etc. The conditions (21), (22) are particular cases of Egn (23). It was
efficiently tested, that the stiffness matrix can be composed on the basis
of more than one differential equation (finite differences operators).

3.5.4. Instability of bars under combined loading

Especially important is problem concerning of bars under action
external combined loadings, which are loaded by all kinds of forces:
longitudinal, transversal, bending moments, torsioning and even
bimoments. As it is shown in the books Ref 30, 35, application of
uniform criterion — comparison to zero main determinant of stiffness
matrix to the bar, or to structure Refs 105, 129, 170, 256, is very
efficient (all by J.B.Obrgbski). Next, some such numerical tests were
done by J.Tolkstorf Refs 168, 176 where are shown certain ultimate
curves or surfaces for critical sets of two or more combined loadings.

On the ground of conditions (21), (22) and (23) can be determined
combinations of critical external loadings including given boundary
conditions, by means of analytical methods or by FDM or even by
MathCAD application.

In result were find diagrams of ultimate critical bar loading (for gy ,P),
as e.g. in the Fig 37, or ultimate critical surfaces (for P1, g2, g3 ) asin
the Fig 38.
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Fig. 37. Ultimate critical curves of forces for simply supported beam
with | cross-section (at axes 145.4 and 2161 - lower) and with channel
cross-section (at axes 48.559 and 3386 - higher)
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Fig.38. b) Ultimate critical surface by given boundary conditions
and scheme of the Fig 36a

3.5.5. Examples of uniform criterion application
In the paper Ref 105 where pointed some other methods of evaluation
geometrical unchengeability of structures by: J.Karczewski and J.Konig
or by J.B.Obrebski. They will be here not repeated.

Examples of numerical results for some own tests, are given below.

In example from Fig.39A, were additionally observed transversal
displacements u? or u®.
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Fig. 39. A) Displacements for middle point (B) of compressed bar;
B) Values of D=det(K(P)), for compressed bar. Buckling in plane
07,7, both Refs 11, 236, 170.

Next in the book Ref 30 was presented example determination of
dynamical stability of the straight, freely supported bar, Fig 40, based
on three differential equilibrium equations of its axis, applying
condition (22). The diagram at right side of Fig 40 was made on
computer changing parameters P and .

LN compression  tension

diaed T bea NIV
8:=0 gfa
s =0 N

as o — f=1_|
[ =600cm I-MT

l.‘—__—.i &
L
w 6=004%8

16,188 2
6 IL:"I

Fig. 40. Critical forces and values of free vibrations for freely supported
bar Refs 30, 105.

Next, in the Ref 129 where given analytical examples for composite
bars and composite frames, based on theory contained in the books Refs
30, 35. There as condition was applied identically as in V.Z. Vlasov’s
book, equation (21), built on the basis of three differential equilibrium
equations of bar axis, Figs 41A. Additionally, the examples were
extended on bar boundary conditions shown in the Fig 41B.
Geometrical characteristics of four composite CSs, Figs 20b-e, were
calculated accordingly to theory proposed by J.B.Obrebski in the book
Ref 35 and in some papers — e.g. Ref 235.

Further, in the paper of Ref 129, was given the analytical example of
critical loading determination, for simple frame shown in the Fig 41C.
There, results were compared for five similar frames, but built of bars
with homogenous and composite CSs, Fig 20, by symmetrical and
unsymmetrical instability modes.
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Fig. 41. A) Schemes of eccentrically loaded and purely bended bars
Refs 310, 30, 236. B) Different bars boundary conditions Refs126, 236.
C) Frame and assumed deformation modes Refs 126, 236.

It was efficiently tested, that stiffness matrix can be composed on basis
of more than one, differential equations (Finite Differences Operators).
Such test for three equations on one bar, Fig 42A was shown in Ref 146.
It is similar to method used by J.B.Obrebski for space bar structures,
called Difference-Matrix Equation Method (DMEM), Ref 11.

Example of calculation of critical force applying FDM was presented
e.g. in Refs 235, 238, where wooden bar was divided on 10 sections, Fig
42B.
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Fig. 42. A) Three independent schemes for displacements of single
bar Ref 146, 238. B) Axially compressed pine bar,
Refs 146, 235, 238.



Fig. 43. Reinforced concrete compressed bars and assumed
bending scheme Refs 232, 238.

The other example, concern the bar with variable rigidity (three zones of
reinforcement). It was solved using linear finite differences operator and
Vianello method, Figs 43a-d. It is possible to calculate the critical force
P, using criterion (21), too. There can be applied operators of first or
second order theory. Similarly, for example from Fig 43i, critical force
can be determined in three ways Ref 35. The first, as above, built with
linear, first order operator by means of Vianello method Ref 35.

The second, applying the same equations and moving right side terms
with loadings to the left side (Kx—Q =0), we come to condition (21)

Ref 35. The third can use the mathematical approach of searching
eigenvalues of the same equations.

3.5.6. Determination of critical force using FEM

Wide explanation of the Finite Element Method application, was in
book Ref 312 given. There, as central point of the method is proposed
comparison to zero of main determinant, of the whole structure, so
called, general stability matrix (using theorem of Lagrange-Dirichlet).
This approach seems to be much more complicated with comparison to
the criterions (21, 22) presented here. It will be not wider discussed.

3.5.7. Determination of critical loading using 3D-TSM

The idea is not new. It was applied e.g. in the papers of Z. Kaczkowski,
M.Witkowski, and A. Podhorecki (all Poland), and probably by the
others. In that papers were used different Time-Finite Elements
approaches, concerning of very simple structures, only.

In the works of J.B.Obrebski and R.Szmit (wider literature see in Refs
109, 115, 120, 122, 124, 128, 133, 149, 223), in general case, four
differential equilibrium equations as the function of time and
three unknown linear displacements and rotation of the bar (with regard
to its longitudinal axis), were formally replaced by similar four Finite
Differences Operators of Boolean type. There is assumed existence of
four-dimensional space; where besides of three dimensions used in
Euclides’ian space, the time is the fourth dimension. So, we get 3D-
Time Space. At the boundaries of considered space, should be applied
modified sets of equations, Ref 223. Such four equations written for
each point of division and for each time moment (point on time axis) are
giving Dynamical Stiffness Matrix K. From mathematical point of view
it gives set of linear algebraic equations (23). Looking for critical
loading, we calculate D=det[K(P,®,v,a,M,m,d)]. The quality of obtained
results depends on the choice of assumed space division — specially, on
the time step which should be carefully selected. Generally, we can
conclude, that the method shows high accuracy of obtained results —
compared with some known in world literature examples. There is
possibility to calculate displacements and internal forces, too.

3.5.8. Part of instability and torsion by stresses calculation

Is possibility of very easy and simultaneously exact calculation of
critical loading of any type bars, under action of longitudinal and
shearing forces, by moments and even by bimoment. Therefore, at all is
right proposal by Obrgbski, to dimensioning bars CSs using four
instability coefficients m,,;, for each of four internal forces, including

bimoment, (Refs 190, 191, Singapore CI-PREMIER (1990) and Ref 30,
32 (1991, 1999)) as in formula:

0—1:5 mML_mW3M+mW2M+mW42 ! (24)
E A I I, I,
or even one M, as below, only:
o= BB Mdr  Map, | Bo. (@)
E A l, I,

In both cases it was proposed to apply additionally Huber-Mises-
Hencky hypothesis, Eqn (20), similarly as in one of the previous Polish
standards for steel structures e.g. PN-90/B-03200 (see Refs 30, 35
Obrebski (1991, 1997)).

Moreover, the coefficients increasing values of stresses by instability,
can be calculated in uniform manner accordingly to well known
formula, Refs 298, 30, 35:

_FRn, (26)
wi Picrn

where: P; — internal force, P — critical force for particular bar, ny, n
- safety coefficients by instability and by force action. Above formulae
do not need more explanations, Ref 35.

4. GEOMETRY OF SOME SPACE STRUCTURES

Below, are considered three essential descriptions important for forming
numerical algorithms. First, concerning of applied spaces and two
approaches to structure geometry description, [1-6,8,10,12-14,17,21-
24].

4.1. Applied Nets of Points — Considered Spaces

Each of described theories, by numerical implementation needs another
algorithm. It is interesting, that almost in all mentioned below programs
were applied identical principles for input data. There, the global
geometry of whole task (space bar structure or bar cross-section, only,
etc.) can be described by means of Boole’s displacement operators,
which for 3D-Time Space has the form (Figs 44-46, 54):

E%SAQ(X,, Xy, X, 1) = D(X, +8,, X, +8,, X, +2,,t +8,) - (27)

where: A - number of operation (or bar direction), @i - operator’s
exponents; both are integer numbers; t — is the time. For static tasks it
can have simplified form as e.g. for 3D, Fig 44:

EACD = Eim ACD(Xi ): Ei'\lya'\zyamq)(xu Xz, X3)=
= (D(Xl tan Xy T8y X3+ aA3)

: (28)

Fig. 44. Net of points definition in orthogonal 3D space

S
L S e
Rt g
5y et e
Lot | — 4 —
Lz (00 | | L
=l =2 x=3 x=4
bbb d

Fig. 45. Net of points definition in orthogonal 2D space, only.



Geometry of Structure in 3D, only
Position of nodes in 3D space can be declared for the simplest
orthogonal net of points, by short formula:

& =%l (29)

where: & - global structure coordinates, i=1,2,3 , x; — integer numbers,
and |l — modules of net of points — real numbers.

h C

Fig. 46. Definition of more important elements of space bar structures
description.

Examples of nets for 2D (i=2) and 3D (i=3), are shown in the Figs 45,
44. Definitions of similar, more complicated nets of points are given in
the Refs 11, 14, 15, 184, 200, 204, 217, 233, 279 and in Figs 48-52.

In program system WDKM, as theoretically the most advanced, are used
six essential coordinates systems. The first, global s, ased. in Egn

(29) and three next:
Z; - local coordinate system in which is considered equilibrium of
nodal forces and are calculated node displacements Fig 46a,
1 =Y; -coordinates for particular element (bar principal, reduced
axes), with regard to it, are considered nodal bar internal forces,
v; - support coordinate system — for definition of given planes of each

support shifting, Fig.46a.
Definition of elements the structures description, explain the Fig.46.
Two additional coordinates will be shown in the chapter 4.3.2.

4.2. On the geometry of plane hexagonal grids
In the works Refs 1-4, were investigated plane single layer grids and
double layer hexagonal trusses.

They were inscribed into inclined net of points, with angle 120°
between axes, Fig 29. The repeatable nodes were of one type, only.
Node is connecting three bars along which were assumed three
directions A=1,2,3 and three Boolea’s operators Eqn (28). Rotation of
node by 180° was obtained thanks assumption of functional character of
exponent a,; of Boole’s operators (Eqn (28)) and by introduction
special mathematical operations (new elements of mathematic). In
result, was obtained possibility of analytical solutions.

The Fig 47 shows the biggest regular bar pattern with regular, which can
be inscribed exactly in circle. Each smaller can be inscriber in smaller

circles, too.
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Fig. 47. Maximal regular hexagonal grid inscribed into circle, Ref (4).

4.3. Geometry of large space bar structures.

Next step, after analysis of relatively simple space bar structures — as
hexagonal ones, was theory prepared for any kind of space bar
structures and its application in original own computer programs. As
fundamental element of such theories, is geometrical description of such
objects.

4.3.1. Geometry, examples and architectural aspects of the family of
two-curvature space bar structures.

The geometry for such type of structures was consequently derived by
means of vector calculus, Ref 11. There, were elaborated detailed
mathematical relations and geometrical objects for following kinds of
net of points:

- orthogonal net of points,

- translational net of points,

- rotationally-translational net of points,

- barrel net of points,

- cylindrical structures,

- ring net of points,

- spherical net of points,

- conical net of points,

- toroidal net of points.
Next it was extended on two, wery important nets of points for:

- elliptical structures,

- wavy structures.

In all listed above cases, description starts from definition of the bar
orientation in given net of points. Next, should be assumed the most
convenient local node coordinates and operations on vectors defined in
this coordinates. After preparation of such elements of analytical
geometry, can be built whole numerical algorithm and programs, using
additionally proper equilibrium equations of repeatable node. More
detailed information on the matter, can be found in the work Ref 11.

Below, are provided definitions, certain essential explanations and
computer drawings of different forms, which should be very useful for
civil engineering large scale coverings — domes, wavy domes, barrel and
cylindrical vaults etc. It presents some information on previous author’s
works concerning of computer graphics, analysis and synthesis of
complicated space bar structures. There, description of structure global
geometry and detailed topology is defined by introduction in input data
the following groups of information:

- kind of applied net of points,

- list of nodes inscribed into declared net of points,

- definition of repeatable nodes,

- definition of repeatable bars,

- given support system,

- external loading.

Some general assumptions of elaborated theories and programs, are
explained a little in presented below Figs 48-52

a)

Fig. 48. a)Definition of regular net of points; b) c) transformation of
orthogonal coordinates x; into curved space (surfaces).
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Fig. 49. Possibilities to obtain various architectural effects by: a) choice
of global shape of nets of points; b) choosing other parts of spherical net
of points; c) d) location of structure on other parts of net of points; e)
cutting convenient part of selected nets of points.

It is assumed, that all nodes of structure are inscribed into regular net of a3
points located in intersections of two, in general case, curved

parametrical lines lying on some equi-distance smooth surfaces, Fig

48a. There, are also explained general assumptions of structure

geometry and some its detailed relations and formulae helpful by 9)
computer analysis of double-curvature bar structures (Figs 48-52. The

architectural and mechanical aspects of considered objects are pointed,

too.
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Fig. 51. Definition of nets of points: a) double curvature revolution type;
Ss b) toroidal (obtained from case a)); c) elliptical (modified net a)); d-i)

applications for: double-layer spherical-, toroidal-, elliptical-, barrel-,
Fig. 50. Definitions of different kinds of translational net of points ring-, and conical type bar structures




Fig. 52. Examples of wavy space bar structures: a) wavy toroidal, b)
wavy supporting part for sphere, c) horizontal waves, d) horizontal-
vertical waves, e) absolute horizontal-vertical waves, f) vertical waves.
The waves starts from certain radius ro.

Described shaping of structures is accessible in two program systems
WDKM and SPES. Moreover, there is possible numerical analysis,
synthesis and optimization.

Additional assumptions for geometry of space bar structures . By
description of structure geometry and detailed its configuration, are used
six coordinates Refs 11, 14, 15, 28,29 etc.:
1. global orthogonal ¢ , with vector basis ai , Figs 44-46, 48-52,
2. local coordinates orthogonal 7 with vector basis 6: for
calculation of nodes displacements and equilibrium or motion
equations, F, =z,g; , Figs 49-61,
3. supports orthogonal coordinates v, with vector basis 5. for
description of its inclination =Vi§: ,
4. parametrical coordinates x; for identifying of node positions in
coordinates <o Fig 48,

5. parametrical curvilinear lines g Fig 48,
6. elemental (bar) orthogonal coordinates m for calculate internal
forces for each bar, =i,
In four above cases coordinates are real type variables: » <R3 ,
z,eR®: v,eR® . 7 eR? Only parametrical coordinates X; are
integer type numbers.

There, are unique functions defining global nodes positions in  R® and
vector basis of the local coordinates:

y'1(x,G;) - g; and
or in matrix form
9'=pg9:

Giz = By (j:

(30)
For structure description was used Boole’s operator Refs 1-5, 8, 11, 12,
30 etc., directed along the bar with number A connecting two nodes

A and B as in the figure 54, Eqn (28).

In all nodes of particular net of points the local coordinates z, are

defined identically. There were used three types of its orientation:

1. The axes Z; || ¢ - parallel, possible to be applied for all kinds

of nets of points.

2. The axes: Z, - tangent to meridians of rotational nets of points;
Z, -tangent to parallels; Z; - orthogonal to both previous, (see
Fig 49d).

3. Cylindrical type as in the Fig 50, similar to type 2, but z, || 5.
In this coordinates system are defined external loadings and calculated
unknown nodes displacements. So, the choice of orientation of this
coordinates was left for user of program.

For adding two vectors of forces or displacements given in two nodes A
and B connected by bar A (see Fig 54), is needed operation:
EAU =0; .AAinEAun !
where, was defined as matrix scalar operation geometrical object:
Ain=0;*E.0,
The same in matrix description (31) can be written as follow:
z z \" - g
A=9'E.0'] =Boeg" ES = SES) - (31)
For orthogonal net of points when Zi || i (type1):then A=1 and
Ayin =04in - itis delta of Kronecker.
In case of double-curvature revolution net of points (type 2) we have:

-5, C, 0
B=|-Cs, -85, —C,
-cC, —SC S,
61 - §1§2 - §162
A = gls2 Elszgz + Czaz 615262 —C, 2|
SIC, CiC,S2—S5,C2  CiC,C2 +5,S2

s2=sin(p, +a,) « C2=c0s(p, +@,) . a,=a,,Ap, -

For cylindrical revolution net of points (type 3) we find:

-s, ¢ O a0 —s
p=0 0 -1|" AA:P 1 C
-c, -5 O ss 0 @

s, =sing, . Cc,=C0S@, .

Fig. 53. Definitions of rotation angles between coordinates z; — local
and v;— of support.

C,Cs C,S; -,
z=Bv. B=|855C—CS; $S,5+CC; S, | (32)
CiS,C3+85; 5,5, —5C; GG,
where: s —sing, « ¢ =cose; - Fig53.

Moreover, are valid transformations between coordinates:
0
n= B Z

o
where B isidentical with B when: s; =sin g, , ¢, =cosj,



i=1, 2, 3 and (see (32) and figure 54)
n=BBv=Bv -

There, are valid reverse transformations:
v=Dz, z=Dp . v=677 )

T

D-B", D=B ,

A B
; :
e UA -
5 I N~ 7 7 o
1 i e
|
|

BT~
7y A/\3 2

where:

Fig. 54. Definition of angles /3. for bar A inclination, (rigid nodes as
in the Fig. 21).

For elemental (bar) orthogonal coordinates 7, the unit basis vectors are

defined as follow:

I03=E:T =[{tAl} {tAZ} {tA3}] '

The unit vectors t_m’ are oriented along of longitudinal bar axis and
along two principal axes of bar cross-section. Angle B, as rotation of

the bar round the longitudinal bar axis is defined in input data. The two
remaining angles - B, and B, are calculated accordingly to Fig 54 by

formulae:
. | I, . | |
sm/32=—|L3 ‘ cosﬂ2=IA ' smﬁaz—lAf ' cosfy =L
A A A A

I/'\ = (IAl)z +(IA2)2

Projections of the bar A on axes z, depends on kind of applied net of
points and on orientation of axes Z; (types 1, 2 or 3):

Ly =lay.

For orthogonal net of points (type 1 of z,):

For double curvature revolution structures (type 2 of z,):
Iy = _réAA13 vy =_r2IAA23 v =0 LA
rn=R,- X3|3 ! rzl =R, — (X3 +ay)l,s-

For cylindrical structures (type 3 of z,):

la="1As » le=hay, » L=rL-NAg:

and r1=R1_X3|3’ I’1=I’1—aA3|3-

For spherical structures (type 2): it is particular case of double
curvature revolution structures, where:

L=6L=R—xl + L=6L=R—(%+a&)l,;"

For any case of net of points, including above and wavy structures, there
is possible to regard, that local coordinates are parallel to global ones

(type 1 of z;) and than, we simply have:

_ #B A
|A1:§1B_§1A ! |A2_§2 _42 ! A3=§S'B_§3A ’

4.3.2. Geometrical fundations and architectural possibilities of
UNIDOM space bar system.

Contrary to family of spherical domes, commented in previous chapter,

for UNIDOM structures are presented investigation results of its global

geometry and bar pattern, only. Up to this time, detailed elements of

mathematical description of nodes and particular nodes, helpful for

composition of equilibrium equations, were not elaborated.

Fig. 55. Detailed geometry of rhombiicosidodecahedron.

Basic parameters concerning the geometry of domes of polyhedron type,
forming UNIDOM (UNIfied DOMes) space bar system, are elaborated.
Therefore, below are shown formulae and drawings explaining in details
geometry of such structures and possible architectural effects. In all
cases the designed domes can be composed by application of very
limited number of bars and nodes. So, the structure should be cheap and
easy in prefabrication, but simultaneously variety of different
architectural outlooks can be almost infinite. The possibilities proposed
here, are much wider as e.g. in well known Unibat or Unistrut or Mero
systems. Here is very important question, about global dimensions of
whole structure, and detailed angles, dependently on the dimensions of
one rectangular wall aXb. When a=4B is side of pentagon. The B
means the length of “blue” bar. There, were calculated the thicknesses
of double-layer substructures: h=0.5B for rectangular substructure and
for irregular sector of pentagon (Fig. 2C) and h=0.6454972244B for
triangular substructures and for two different sectors of pentagonal
substructure (Fig. 2C).

Fig. 56. Models and shaping of rhombiicosidodecahedron



Calculated for rhombicosidodecahedron, essential dimensions and
angles Figs 55, 56; R=7.505 B, are as follow:
pentagon, Fig 55a, when a=4B (B — length of blue bar): R=3.4026B,
. 3.402603233B , . (3.402603233B),
siny=———— ' y =arcsin| —————
R R
N = 3.402603233B cos 36" = 2.752763841B » g5 _ 27527638118,

Rcos y
2752763811 B } L C=ys

JR? = (3.402603233B)?

7 =26.96063187° 5 =21.51782409°
Triangle, Fig 55b; R=1.1547B,

R =1.154700538B | m=0.5773502692B

5= arctg[

¢ = 48.47845596° .

. [1.154700538 B) . (0.5773502692 Bj _
®=arcsinf ———— | , v=arcsin — R O=0+v |
Rectangle, Fig 55¢; R=2.236B,

b i _ _
B=E=R5'”’f , N=Rcos¥ = N=Ncose

N -

/,IZ(DO—ZU &=

_— - =30.73400322°
RCOSI?COS&‘]' K=2r.# '

£=15.36700161°  x =7.937471229°

K= arctg[
K =15.87494246°

Calculated dimensions and angles (a=4B): for dodecahedron (K=0 and
v=0): R=5.4768804 B, , —3840869235° , &=230.17317768° ,

. (2B :
¢ =68.58187003° and angle %o~ 2arcsm(?j =42.83626079

Up to the moment were discovered some possible bar patterns for flat
double-layer pentagonal substructures, Fig 57A. Some next for single-layer
substructures are shown in the Fig 57B.

Fig. 57. Possible bar patterns for pentagon, by Zometool elements.

oL=72° PB=54°

& h=0.645

h=0.5

H =1,701B

Fig. 58. Global geometry of: A) Concave pentagon with possible bar
patterns B) Convex — high possible arrangements by ZOMETOOL
elements, C) Convex - low double-layer substructures.

Fig.e 59. Geometry of node: a) node used in Zometool kit; b)
Rhombiicosidodecahedron as a model of node; ¢) Comparison of the
nodes of rectangular and triangular substructures.

Table 8. Numbers of bars connected in node.

Type of node Blue Yellow Red
(polyhedron) Rectangle [Triangle [Pentagon
Rhombiicosidodecahedron 30 20 12




Table 9. Inclination of all possible connections in node for B-blue, R-
red and Y-yellow bars.

o Angle B [deg]
deg | 020|33|37|57|59(60|70/90]110{120{121[123[143[147(160(180
0 |B R Y[B|Y R B
20 |B B B B
30 R
45 Y Y
57 |B B B B B B
70 Y
90 |B|Y R B R Y|B
110 Y
123|B B B B B B
135 Y Y
150 R
160 | B B B B
180 | B R Y|[B|Y R B

Table 10. Comparison of the thickness h of double-layer substructures.

Type of substructure
Rec- Triangular  [Sector of pentagon| Irregular Irregular
tan- as regular triangle |  sector, sector
gular Fig.58A Fig 58B Fig 58C
h| 0.5B | 0.6454972244B | 0.6454972244B 0.5B 0.6454972B

Table 11. Elevation of central node in pentagonal substructure (a=4B)

Type of pentagonal substructure
Concave, Fig 58A
H -2.202B

High convex, Fig 58b
1.701B

Low convex, Fig58C
0.525B

Moreover, it was recognized geometry of node for UNIDOM space bar
system, Fig 59, Ref 180, with two angles horizontal and vertical for
defining inclination of the particular bars in 3D space. Detailed
derivations, formulae, further drawings, remarks, conclusions and list of
references are given in the paper given in mentioned LSCE 2007 book.

5. ANALYSIS OF STRUCTURES

Each elaborated theory, can be used for practical application by
designers searching solutions in analytical or in numerical way. The
analytical solutions, are very valuable, giving formulae ready for
calculation of searched information. Unfortunately, most of such
solutions concern of simplified tasks, only.

In some cases of bar structures were found analytical results, in other
hybrid solutions (analytically- numerical) and numerical, only. The last
seems to be useful for almost any type structures. In next chapters are
given some information about elaborated by author approaches to
analysis of different types structures.

5.1. Analytical solutions
Here can be shortly presented two domains of analytical solutions. The
first for hexagonal plane grids and the second for separate, straight bars.

5.1.1. Solution for hexagonal grid

As it was shown in chapter 3.2, in some works were found analytical
solutions for hexagonal bar infinite band grid (bar plate), loaded in each
node by uniform loading (identical force in all nodes) or loaded
regularly as in the Fig 26 a-d, by different boundary conditions on both
edges.

The second solution concern of hexagonal grid freely supported on
external circle and loaded by identical forces (perpendicular) in each
node.

5.1.2. Examples of analytical solution for thin-walled bars

For single straight thin-walled bars were obtained following solutions,
Refs 30, 35:

- Derived formulae for torsion angle and internal forces for 16 simple

cases of loading and boundary conditions.
- Some examples of formulae for critical forces of types:

- longitudinal force,

- excentrical longitudinal force,

- bending moments,

- critical vibration of bar under action of longitudinal force.
- Solutions for bar interacting with surrounding media: air,

water, soil.

5.2. Numerical algorithms and solutions

There, were elaborated algorithms and programs for different types of
structures: single straight bars, plane grids, wide class of space bar
structures (including domes, cylindrical etc.), for elaboration of
experimental results, calculations of geometrical characteristics of bar
cross-sections, calculation of stresses etc. These algorithms were
destined for: large computers with external memories, for PC
computers, programmable calculators and for MS Excell.

5.2.1. Algorithms and solutions for some space bar structures

In the dissertation Ref 4 (Ph.D.) were presented some numerical tests for
double layer small tasks, shown in the Figs 32-34 (plane and
cylindrical). For this purposes were prepared some programs listed in
chapter 6.2. They can be easily extended on next applications.

The other application of derived equations for hexagonal grids, were
proposed in works Refs 4, 113, 135, 155. There, obtained analytically
one equilibrium equation of node of finite differences character (for
deflections, compare Fig 30) is applied to composition of stiffness
matrix of whole structure. This way it is possible to have structures with
more complicated shapes of its contour, and different loadings in each
nodes. Such approach reduces drastically number of unknowns with
regard to task, where are used three original equilibrium equations.

Next some more advanced algorithms, are shortly listed in next
chapters.

5.2.2. Difference-Matrix Equation Method

This manner of composition (Refs 4, 11, 28, 29,135,) of stiffness matrix
of structure was applied in two large programs KMTp or KMTg and in
the most universal WDKM. There, were applied physical relations for
single bar, shown in Table 5, structure geometrical description, as in
chapter 4.3, analysis in range of static and dynamics, theory of first and
second order, finite dimensions of nodes Figs 21, 54; any bar pattern,
any support systems including inclined sliding joints, any boundary
conditions for free displacement function of each bar (including
rotations), any loading of large structures: in nodes and on the length of
the bars (not to the end enoughly tested), possible declarations of any
bar rigidities, etc.

5.2.3. Application of Finite Differences Method

The method firstly destined for teaching purposes, by means of
universal program MRS, written by J.B. Obrebski (Refs 136, 155, 177;
17,52 kB, only) quickly was applied to scientific purposes, for static,
stability and dynamics of straight bars (including bridges, tall buildings)
and plates. The range of applications of the method, was extended on
3D-TSM for dynamics (see chapter 5.2.6 and Refs 133, 146, 165, 223,
232, 237). Wider description and examples of application were given in
two fundamental works — Refs 30, 155 (there see for wider references).

The method gives possibility easily to take under consideration:

- different schemes of structure (including boundary conditions),

- variable rigidity of bar or platte,

- any kind of bar cross-sections (solid girders — homogenous or
composite, tubes, rolled cross-sections, thin-walled, trusses, space
bar trusses,

- variable —any loading system in each node,

- moving loads with variable path, velocity, jumping etc. (see
chapter 5.2.6).

Simultaneously, the solutions, in spite of complicated character of tasks,
is solved very easily. The definition of applied equilibrium equations,
scheme of structure, its loading and support systems, bar rigidities —are



declared from keyboard by user...

5.2.4. Own algorithms for space bar structures by Finite Element
Method application
There, were built two fundamental programs

- small program FEM for didactic purposes in University of
Warmia and Mazury in Olsztyn,

- large program system for technical optimization of mainly space
bar domes for (written and tested with A.H. Fahema) named as
SPES (SPace structurES).

Program system SPES consists of some programs for:

- printing scheme of structure,

- analysis of structure,

- analysis of calculated results (searching minimal or maximal
values of displacements, internal forces, stresses, geometry of
structure, volume of built in material, weight of structure,
comparisons of some declared tasks (up to 20) etc.

5.2.5. Solutions for composite structures

Analysis of internal forces in elements of structures composed from
composite bars (built of some materials forming longitudinal strips) can
be done by means of all proper programs prepared by author, mentioned
in this paper. Applying them, we shell introduce properly calculated
bars rigidities, by means of theories given e.g. in books Refs 30, 32, 35
or by programs MB, MBK, MB-PC (see chapter 6.4)

5.2.6. 3D-Time Space Method for Dynamics

The general equations of motion in the case of dynamics and theory of
second order are rather difficult to be applied to analytical solutions
useful for technical real solutions. So, a closed analytical solutions for
dynamical tasks are rather very simple of academic character. Such
limitations disappear when FDM is applied even for combined loadings.
Such solutions are easy to be executed even by means of commercial
MS Excel program.

The 3D-Time Space Method uses time as fourth dimension. There is
applied Finite Differences Method and program MRS. This way, are
available solutions of tasks, almost impossible to realization by other
approaches. Here, very easily can be modeled: - impact single or multi
loading, moving alone or group of loadings, the last — can have straight
or curved in any way path, mass acceleration (each one separately),
slacking, starting and stopping, changing direction of move, including
opposite ones, etc. Moreover, loading can act with different intensity
and/or velocity, or jumping (landing aircraft) etc. The same can concern
of contact problems for supports, etc. So, program of loading can be
applied as variable in 3D space and in time...

In the method, accordingly to scheme given in the Fig 60, behaviour of
the structure in each time moment t considered individually, is
included to common task as it is explained in the Figs 61, 62
(J.B.Obrebski and Szmit Ref 223).
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Fig. 60. Real scheme of 3D-Time task numerical analysis.

a) =l =2 =3 =5 =6 (=7=m b) =l =2 =3 = =S b :;.
= [ XX = X X
=2 | X | X | X = X X
- X | XX =1 | X X X
=4 X[ X|X X X X
= X | XX =5 X X X
=6 X|X|X]| =6 XX | X
1=7=m X | X | X fe7=m X | X[ X
Fig. 61. Numerical representations of the 3D-T space of the Fig.60.
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Fig. 62. Detailed scheme of 2D dynamical stiffness matrix for structure
considered in 3D-TSM with 6 nodes (b), 4 degrees of freedom per node
(c) during 7 time moments (a).

Some such examples were presented in previous author’s works. There,
as central point of numerical algorithm is solution of Eqgn (9), where this
time matrix K is called as dynamical stiffness matrix. Applying FDM
we can modeling many tasks, steering proper steps along all of four axes
of 3D-T space. As particular cases, there can be used 2D-T (plates,
shells) or 1D-T (beams) spaces. From numerical point of view, always it
is 2D problem — two dimensional, square stiffness matrix K Eqgns 21-
23, Refs 115, 122, 124, 128, 133, 149, 169, 223, 232, 238, 240, 256.

a) 3

| 1=100m

a= 2m
b) "2 |h=4m

9= 9
a= 2m

b=0m b=0m
s
I=18m

Fig. 63. Scheme of bridge with moving load a), with bridge cross-
section b).

Proposed approach is very similar to DMEM, now applied to 3D-Time
space (3D-T). It brings us to name of the: 3D-Time Space Difference-
Matrix Equation Method (3DT-DMEM). All kinds of above approaches,
together will be named 3D-TSM.
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Fig. 64. Diagrams of bridge deflections [cm] under moving load on
bridge with span 100m (Fig.63) in eleven time moments (series), with
parameters: loading mass G=100t, loading velocity v=36, 180, 360, 720,
3600km/h, bridge mass p=0.022 695 016kNs?/cm, its rigidity E1=2.083
333E+13 kNcm?, Refs 240, 241.
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Fig.65. Freely supported steel box beam with moving load Ref 238;
v=36km/h A) v=360 km/h B).

Simplicity of the method, allow on its implementation by R.Szmit for
tall-buildings, on standard PC computer series Pentium, using
MathCAD and Excel programs, too (Ph.D. dissertation Ref 281).
Mentioned commercial programs as to general, were not comfortable
and not to the end efficient for 3SDT-DMEM application.

Therefore, in the J.B.Obrebski’s works Refs 105, 232, 235-238 the
attention was turned on numerical implementation of the method, where
is possible:

- to apply special, general and simple program MRS (very small
17,52kB!!) author J.B.Obrebski (Refs 110, 113, 117, 135, 155,
240), used for teaching of the mechanics principles for beams and
plates etc.),

- to use any kind of sets of equilibrium equations, of Finite
Differences (first or second order etc.), including tasks concerning
of 3D-Time space, where the method is oriented on straight bars
and in it: tall-buildings, bridges, foundation piles (driving in) etc.

- application of above simple standard program for the beams, where
is possible to consider influence of elastic three-parametrical
Winkler foundation, interaction with wind or fluid, friction etc., to
plates and shells including dynamics and stability, too (J.B.
Obrebski Ref 30),

- modelling of above structures, homogenous, anisotropic and

composite,

- modelling of movable loadings — e.g. car(s) on a bridge (as beam or
as plate),

- to use advantages following of repeatability of the structure nodes
and loading,

- to consider simple-, elastic-, rigid and intermediate supports of
investigated structures.

The works of J.B.Obrebski Refs 237, 238, 240, 241 over the 3D-TSM
gives positive answers on all above questions bring us to next category,
exact and relatively simple numerical engineering solutions. They are
easy in application and comparative or even often better then FEM
results.

The numerical examples shows Figs.63-65. In the last example the
velocity (about 720km/h) of moving mass G can be considered as
critical one, Figs. 63, 64.

6. OWN PROGRAMS AND SYSTEMS FOR ANALYSIS AND
SYNTHESIS OF STRUCTURES

Theories associated with these problems, are rather complicated -
mathematically advanced and therefore laborious by practical
calculations. So, for such easy reason all above problems were solved by
means of computer. The particular problems, accordingly to
development of computer technology, were implemented on successive,
the most popular in Poland computers, of particular its generations, Ref
85,94, 117, 155.

The programs are based on own theories named: Difference-Matrix
Equation Method, on Finite Element Method (FEM) and even of Finite
Differences Method — including 3D-Time Space Method (for dynamics)
dependently on its destination and analysed problems. Moreover, some
programs are oriented on strength analysis of single bars including these
with thin-walled cross-sections, full and composite ones. There are
applied algorithms using many theoretical formulae.

The author from 1970 was writing with different intensity the computer
programs and systems oriented on needs of civil engineering. In this
time period, programs were written in many languages, from which to
more important belong: Odra Algol, Algol 1204, Fortran, Turbo Pascal i
C**. In years 1974-1999, specially intensively was working on large
program systems, documented in book form, written in Polish and German
Refs 28, 29. Numerous papers were published in conference proceedings
in English, too. These programs can be assembled in five groups.

6.1. Programs for solution of sets of linear algebraic equations.
There, should be mentioned:
- solution of set of algebraic linear equations by Gauss method for
symmetrical matrix, Fig 67,
- solution of set of algebraic linear equations by Gauss method for
general square matrix, Fig 66.
Above programs were written in many versions:
- executing calculations in computer memory, only,
- using computer memory and external memories (drums and
magnetic tapes),
- using computer memory and virtual drums, etc.
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Fig. 66. Scheme of unsymmetrical set of linear algebraic equations.
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Fig. 67. Scheme of symmetrical set of algebraic equations.

6.2. Elaborated own programs oriented on hexagonal structures
Programs in Algol for:

- circular plane hexagonal grid,

- double-layer plane space bar truss type | (Fig , Ref 4),

- double-layer plane space bar truss type Il (Fig , Refs 3,4),

- cylindrical double-layer space bar truss (type Il Fig ,Refs 3,4),

6.3. Programs for large space bar structures

Here, can be pointed some following programs:

KM — program written in Algol 1204, latter translated on FORTRAN. It is
destined for analysis of structures with nodes inscribed in orthogonal net of
points, only.

KMTp — larger version of KM program, on Odra 1305 computer, written
in FORTRAN, extended on automatic dimensioning of circular, tubular
cross-sections, accordingly to allowable stresses method, accordingly to
PN-64/B-03220 (aluminium structures) or PN-76/B-03200 (steel
structures). There, program proposes proper size of bars cross-sections, by
defined structure global geometry, types of its cross-sections, loading
system and supporting system.

KMTg — identical program as KMTp , but automatically dimensioning of
circular straight tubes, accordingly to ultimate states method, by PN-80/B-
03200.

Fig. 68. Definition of simplest, double curvature, revolution net of
points.

WDKM - it is system of about 314 cooperating procedures written in
FORTRAN for Odra 1305 computer. It enables analysis and automatic
dimensioning of structures inscribed in four types of net of points Refs 11,
14,15 etc.:

- orthogonal, Figs 44, 45,

- rotational with two centres of curvatures, Fig 51a, 68,

- translational net of points determined by any type mathematical surface
(translated along axis z ) and two families of vertical planes, Fig 50a,b,
69.

- revolution-translational nets of points with leading, mathematical line

rotating around axis, Fig 50c,d.
Global shape of structure can be changed in input data by declaration other
number of a few parameters.

Fig. 69. Definition of the translational nets of points - here as leading
global surface is used hyperbolical paraboloid and d=z,+Az.
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Fig. 70 Types of cross-sections automaticly dimensioned in WDKM

program system, with shown points for calculation of stresses
(compre Fig. 22).

So described the structures global geometry permits in easy manner to
generate descriptions and input data for specially large space bar
structures, one- and two-layer: spherical, cylindrical vaults, barrel, conical,
toroidal etc. This way can be easily described and analysed similar
structures as generated by Formian (by H.Nooshin) and tensegrity domes
proposed by J.Rebielak.

SPES - it is system of a few cooperating programs, composed of about
100 common procedures. It is destined for analysis and semi-optimization
of rotational, elliptical, complicated space bar domes: single- and multi-
layered. It was built in cooperation with A.H.Fahema (Libya) for his doctor
thesis. Three essential programs for input data, solver and analyser were
written in FORTRAN and two in C™* for PC computers. These programs
can describe, analyse and optimize trusses or frames with general shape
identical as by WDKM, extended on elliptic, and cyclic wavy domes, with
vertical and/or horizontal waves.

There, is possible static analysis, only, and comparisons up to 20 similar
structures, with regard to up to 20 objective criterions of optimization.
Some diagrams facilitate to compare results of investigated objective
criterions. It permits for designer to do last decision about the structure
choice. There are possible to be compared: maximal forces, stresses,
displacements, elastic work of structure, elevation of highest node, number
of nodes, bars etc. Description of structures is there similar and probably
sometime wider as in H.Nooshin’s FORMIAN programs.

6.4. Programs for bars strength analysis

It were built some small programs for auxiliary tasks of strength
calculations for straight bars with any cross-sections. They were written in
Turbo Pascal:

MB - program for calculation of geometrical characteristics of the bars:
area, gravity centre, position of principal axes and inertia. moments. The
cross-section is modelled from smaller elementary fugures as: rectangular,
triangle, one quarter of circle and circle.

MBK — Program for calculation of geometrical characteristics of
composite cross-sections. It is similar to MB program, but there each
elementary figure, defining whole cross-section, can be declared as made
of different materials [11].

MB-PC - it is the program in Turbo Pascal, producing similar results as
MB or MBK programs, but for thin-walled rectangular cross-sections open
or closed. There is graphics for drawing diagrams of: coordinates, sectorial
coordinates, usual- and sectorial -statical moments.

NG — program for calculation of principal stresses and its directions, for
plane and 3D states of stresses.

NK — program for calculation of critical forces and stresses, too, for
straight bar.

HMH — program calculating values of reduced stresses accordingly to
Huber-Mizes-Henckey hypothesis. It draws for given material ultimate
curve and shows position of actual state of stresses.

STAN - this program calculate and draws values and diagrams of internal
forces, geometrical characteristics, including warping ones and stresses for
cantilever thin-walled beam with open or closed rectangular cross-section
and by two cases of boundary conditions, Fig 4A. Identical beams were
investigated experimentally for checking foundations of theories for thin-
walled bars Refs 30, 32, 35.



6.5. Programs to elaboration of own experimental results.
Here, are listed small programs, destined for facilitating elaboration of
experimental results for beams analysed by program STAN, too. They are
written in Turbo Pascal.

— this program elaborates longitudinal and circuital displacements in
particular cross-section.
U3 — the program elaborates displacements perpendicular to bar cross-
section, for the same cantilever beam.
TEL - elaborates experimental results of electro-resistance measurements
for considered bar. It calculates strains, stresses and draw proper diagrams.
TELW - it draws the diagrams, only, on basis of data produced by
program TEL.
TAB - this program calculates values of such internal forces as bimoment
and bending-torsion moment using experimental results. It is done for bars
identical as calculated by programs STAN, MB-PC, TEL and TELW.
YOUNG - it calculates Young’s modulus measured experimentally.
BETA - it enables calculation of certain coefficient correcting bar
torsional rigidity for thin-walled, investigated as above bars (see theories of
Vlasov and Ref 30, 32).

6.6. Programs Elaborated Specially for Didactic.

There were written two programs MES and MRS destined in the beginning
for students teaching in University of Warmia and Mazury and in Warsaw
University of Technology, on faculties of Civil Engineering, both Poland.
The programs are written in Turbo Pascal and have no any graphic. Its
destination is to show for students principles of foundations relatively
Finite Element Method and Finite Differences Method.

MES - the program enables analysis of small plane trusses and frames,
producing displacements, internal forces and reactions. It has the didactic
destination, only.

MRS — the program is oriented on analysis by Finite Differences Method
of any task which can be described by differential equations, transformed
to finite differences operators with defined boundary conditions. These
operators — equilibrium equations and next physical relations for internal
forces, are defined in input data... So, the program is very universal. Till
now, it was used for: bended bars and plates, for bars and plates on elastic
foundation, for stability problems, for 3D-Time Space Method for
dynamics of tall buildings and bridges under moving loads, etc. There, the
analysed bars can have full or thin-walled cross-sections, to be
homogenous or composite, to have constant or variable cross-sections on
its length etc. There can be applied any loading system — variable in 3D
and in time, too.

6.7. Numerical dimensioning of bar structures

To special function of programs KMTp , KMTg and WDKM belong
automatic dimensioning of bar structures. The programs for given
structure, with defined scheme (bar pattern, support system, loading
system, declared types of bar cross-sections) are searching dimensions
of cross-sections, assuring safe state of stresses in whole object. The
procedure of selection of proper dimensions has iterative character and
run in maximum 3 steps.

6.8. Optimisation and semi-optimization of large space bar domes
Below are given some drawings (Ref 17, Figs 71-76), only, showing
possibilities of the programs in two domains — analysis and shape and
form finding. The wider comments and next examples can be shown
during presentation.
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Fig. 71. Single layer space bar structure stretched on torus.
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Fig. 76. Scheme of double layer, wavy space bar structure — horizontal
and vertical waves.

7. OBSERVED EXACTNESS OF STRUCTURES ANALYSIS

In literature are accessible some reported information, about errors,
which can be made by incapable or improper application of analyses
theoretical or computer, too. The author was publishing some papers
discussing such problems, Refs 77, 139, 142, 160, 162, 163, 167, 172,
234, 247.

There, are well known examples (below are quoted a few, only) that:

- application FEM to analysis of single bars can give error up to 394%,
Pruki and Lopez Ref 302 (2001); - by analysis of core for tall
building, warping normal stresses — from torsion, can reach 270% of
normal stresses from bending, Smith and Coull, Ref 304 (1991);

- taking not into consideration of reinforcement in bended concrete
elements, gives deflections bigger e.g. about 95% (numerical tests,
Obrebski (LSCE 1995-2006);

- torsion in most of computer analyses is to simply described, Obrebski

(LSCE 1995-2006),



critical compressing force of bending-torsion type for steel column
(high 400cm, with | 20x20 CS), reach value P¢=1202kN, when
critical force of bending type only (Euler), has value P,=1852kN,
(omitting torsion we obtain error about 54%), book Obrgbski Ref 30
(1991).

It is well known, that for any type bars (TW, compact, homogenous or
composite) with torsion appears bimoment and bending-torsion
moment, both generating significant warping stresses.

7.1. Accuracy of designing process in the light of contemporary
knowledge.

In some author’s papers were presented observations on some methods
of structures analyses, which can make designing process of much
higher quality and erected objects much more safe. It concern of some
steps of designing process, mainly concerning of structure analysis:
stiffness calculation, determination of internal forces, stresses
calculations and at last dimensioning of cross-sections (CSs). On each
of these steps, by nowadays widely applied approaches, can be
generated significant errors. Such conclusion follows of compared some
results of given similar analyses: analytical, numerical and
experimental, performed for many different objects and types of
investigated tasks, own and quoted in literature. There are pointed high
uncertainty obtained results, especially often when produced by
computer. Next, in some other analytical and experimental examples, is
visible strong influence of bimoment on stresses and on instability of
thin-walled bars. The other serious problem concern of the mechanics of
structures built of composite bars. So, it is recommended to apply better
theories and to prove and evaluate obtained results in some independent
ways, including experiments, too.

7.2. Short Description of Quoted Examples - Results and Comments

o Examples Known From Literature. In the papers Refs 172, 247,
were shown some extreme examples which indicate possible errors.

» FEM Tests. Pruki & Lopes Ref 303, an example of freely supported
concrete beam, uniformly loaded, have given. There, were compared
longitudinal stresses calculated by three well known programs and
errors determined by uniform formula. There were presented results for
53 types of beam divisions, and different type finite elements, totally
172 times! The error e<1% with comparison to analytical solution was
obtained 7 times, only... (4.06% of all examples); €>20% in 91 tests
(52.9%); e>50% in 33 cases (19.18%); e>100% to 394%, in 10 cases
(5.81%).

» Experiments and FEM Results. Glinicka in she’s habilitation thesis,
Ref 297, hes investigated thin-walled steel girders for window or door
headers, loaded by two concentrated forces. The steel beams have
rectangular closed box cross-sections or of some open types, filled by
foamed concrete, too. Comparing values of loadings giving deflection
value 3 mm, in one case only convergence of experimental and
numerical results was quite well, in remaining errors were from
€=15.6% up to 88.8%.

» Torsion of thin-walled bars. There, coefficient 8 correcting calculated
bar torsion rigidity, measured by Obrgbski and Urbaniak (Refs 195,
197) was verified by Jankowska using FEM, Ref 119. The idea was
simple. The thin-walled bar is loaded by torsion moment and proper
torsion angle must be calculated or measured, and next both were used
for calculations. The experimental curves are strongly nonlinear when
adequate numerical ones are almost linear. Moreover, three curves for
the same bar, dependently on applied elements, are almost horizontal
lines with values B=1.5; 2.55; 2.75 (there p=2.75/1.5=1.83).

» Comparison of Optical and FEM Approaches. Dymny et al were
presented investigations performed on order of European Union. There,
special plane specimen was tested. Interferograms obtained
experimentally and synthetic calculated numerically, were compared.
Differences of two pictures obtained in both above ways are very strong.
» Symmetry by Numerical Solutions. In the master degree theses were
investigated double layer space bar structures. There, as purpose was
checking the exactness of numerical calculations. Symmetry of structure
was modelled in three ways. Nearby plane of symmetry internal forces

were smaller up to 21.4% and deflections for quarter of structure bigger
up to +14.2% of obtained for whole structure. Part of the structure is
working as having smaller rigidity Refs 263, 264.

» Other Experiments (LSCE 2002). The first by Gleich, concern
verification of numerical analysis of adhesive connections. By oral
presentation was reported dramatic difference of diagrams character of
failure load - theoretical and experimental. The example by Meier et al
concern of strengthening of reinforced bridges and tubular masts by
carbon-fibre reinforced polymers. Curves obtained experimentally and
calculated for ultimate load are remarkably different.

o Composite Bars. For such bars is destined theory Refs 30, 35 (see
LSCE 95, 2004, too). There, if we change value of general Young’s
modulus, normal stresses, bar elongation and strains are still the same,
but values of reduced characteristics are changed. Moreover, the
composite bars, in all cases have the rigidities much higher, than known
from traditional strength of materials. It has influence on stresses and
displacements. So, numerical analyses should take into consideration
reduced geometrical characteristics, on stages of internal forces and
stresses calculation.

o Some Numerical Tests on Simple and Space Bar Structures with
variable CSs.

» Cantilever beam with constant and variable rigidity, triangle or
trapezium type (LSCE 2002). Were derived analytically formulae and
values of deflections. These results were compared with numerical
calculations done by Finite Differences Method, with differential
equation of fourth order. At the end the triangular cantilever, rigidity
El,=0 and the analysis is impossible (division by zero). In the case of
trapezium type bar by FDM variable rigidity is not visible for algorithm.
» Frames With Variable Rigidity. The test concern of three plane
frames having variable rigidity of bars (more stiff ends). All bars have
thin-walled rectangular cross-section 10x20cm of two types — open and
closed with two walls thicknesses. The numerical algorithms needs to
calculate torsion moments of inertia I; (Refs 30, 32). It depends on the
length of bar section and on functions sh(x) and ch(x). There, computers
accepts x<224, only. It brings on computer approaches strong
limitations.

o Next Observations and Proposed Theories.

P In next examples it is visible influence on results quality of applied:
methods, theoretical or numerical model and input data for numerical
analysis.

» The bimoment is evidently real internal force, very dangerous for
structures, which should be seriously considered by designing of objects
composed specially of thin-walled bars. In nowadays analyses, computer
programs and standards, the bimoment is completely ignored! Instead of
possible good analytical analysis (Refs 30,35) its influence is taken into
consideration applying some empirical coefficients, assumption of
“effective” (?) cross-sections etc.

» Numerical modelling of shape finding gives certain approximation of
results obtained experimentally (Ramm’s shape numerical optimisation,
and Isler’s experiment)

» Applying author’s, new theories and programs - for strength analysis of
composite bars, for global analysis of space bar structures (Refs 11, 30, 35)
and the 3D-Time Space Method for dynamics of some type tasks, etc. the
possibility to do big errors is seriously reduced.

7.3. Evaluation of computer measurements by modern System 5000
of the firm VISHAY.

There (Ref. 282), were applied rosettes with basis of each of the three
sensors 3 mm. In spite of careful preparation of measurements, the 4
sensors in 3 cross-sections (on 32) were not working.

It seems, that by such excellent equipment should to give very exact
results. Unfortunately, after careful examination of presented materials
(Ref. 282) we find, that there we can have many to wish. So, in 3 cross-
sections of model type L were applied 8 loading levels. In proper tables
for stresses we find lack of results (inscription - #ARG!) for all 25
measured points for first loading level and minimum one such inscription
in first 3 to 6 loading levels, on 8! Similarly, in remaining 29 cross-sections



of frames type L, T and Y, were applied 9 loading levels. There also was
lack of results (inscription - #ARG!) for all 25 measured points of first
loading level and minimum one such inscription for 3 to 9 loading levels
(on 9M). Even in 4 cross-sections on 32 were not presented error-less
results. So, in 4 cross-sections on 32 were not presented complete results.

In 3 next cross-sections, full information was given for the highest (9th)
loading level.

So, it can be concluded, that by computer elaboration of electro-
resistance measurements results, the quality of obtained information
was rather weak. Contrary, by manual measurements and results
elaboration, similar problems were not observed.

7.4. Summary to the problems of accuracy of structures analysis

m Computer results in many cases can be regarded as certain simulation
of the phenomena, only. It often gives the approximate evaluation of
investigated problem.

m Preparation of complicated projects, without experimental verification
is unbelievable. The part of experiment in evaluation of structure
behaviour is rather without any discussion.

m Obtained errors in numerical analyses applying FEM can reach even
394%. So, we shell be very cautious with application of its results.

m Application of reduced geometrical characteristics on each stages of
bar (and other) structures analyses, is recommended. It permits to
eliminate significant errors in evaluation of internal forces,
displacements and stresses.

m Still, in some situations, even applying computers we have serious
limitation of exactness of obtained results.

m Calculation of the half or the quarter of symmetrical structures, can
give remarkable errors!

m Some of calculated results are dramatically different from reality. A
progress can be obtained after its verification or calibration by
experiments.

Next conclusions the author leaves for the reader. In quoted references
are quoted next wider literature lists. Quoted papers gives more
information about some possible sources of errors.

8. SUPERVISED WORKS
The author has promoted some dissertations, as well of M.Sc. level as
Ph.D. , too. Below is given its short description.

8.1. Supervised master degree works
All together there were prepared and successfully finished 17 such
works. They can be classified in following manner:
- analysis of thin-walled bars, Refs 259, 267, 271,
- experimental analysis of thin-walled bars, Ref 272,
- analysis of space bar structures — plane roofs, Refs 262, 263, 264,
- buildings, Refs 260, 261, 265,
- bridges 266,268,
- numerical programs, Refs 269, 270,
- projects, Refs 273-275.

Below are shown some pictures explaining categories of investigated
structures.
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Fig. 77. Double layer truss investigated by M.Kowalski Ref 264.
LSCE 2005 %: Nodes — 97-, unknowns — 291-294, members — 324-328.
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Fig. 78. W. Stabosz, Ref 263, LSCE 2005.
Nodes — 84-265, unknowns up to — 795,
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Fig. 79. Double layer truss investigated by B. Zbyszynski; nodes — 97-
630, unknowns up to — 1890, Ref 262.
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Fig. 80. Diploma project, by P.Kierzkowski and J.Tolksdorf,
Refs 274, 275.
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Fig. 81. Diploma project, supervisor J. Karczewski, analysis by progtam

KMTp. Nodes — 697, unknowns — 2091, wide of half band - 92

8.2. Supervised Philosophy Doctor dissertations

There, were successfully elaborated and finished 6 such dissertations.
Two next are continued. These Ph.D. dissertations can be classified in

following manner:
-analysis of thin-walled bars, Refs 276, 277, 278, 283,
- space bar domes, Refs 279, 280,
- tall buildings, Ref 281,
- analysis of thin-walled frames, Ref 282,

Some examples of structures investigated in this category dissertations

are presented by following Figures.
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Fig. 82. a) scheme and b) defections of tall building, investigated by
R.Szmit, Ref 281.
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9. PARTICIPATION IN DESIG

Below are presented a few exal

programs elaborated by author.

) model dY
Fig. 83. Variants of dome investigated by A.H.Rhuma, Ref 280, for
optimal solution. Nodes — 225, unknowns — 675, members — 616, span
30m.

NED PROJECTS
mples of structures calculated by
The general schemes and some

numerical parameters are quoted, only.
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Fig. 84. Scheme of calculated shipyard hall in Szczecin, (app. 1978)
Nodes — 326, unknowns — 978, wide of half-band — 66, Ref 28, 29.
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Fig. 85. Scheme of MEGASAM - market hall in Warsaw, app.1978.
Nodes — 1079, unknowns — 3237, wide of half band — 165, Ref 11.
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Fig. 86. Scheme of frame investigated by R. Nagorski, Ref 299.

The other example, calculated for purposes of habilitation thesis of R.
Nagorski, concern of a frame of tall building, with rectangular cross-
section. The bars of frame form the tubular frame with 312 nodes (24 on
each story — net 4 x 8 modulae, 13 levels), including 24 supporting
points wholly fixed or sliding articulated joint (hinge. The task has 1972
degrees of freedom, with width of half-band — 150. Time of
computations was 4.5 hours. The calculations were performed for
comparison with own theory of R. Nagorski with the others, Ref 299.

Fig. 87. Competition project — bird view of proposed two torus type
”gaps” to be infilled to the building of Faculty of Technical Sciences on
the campus of Warmia and Mazury University in Olsztyn,

Refs 145, 162.

10. WRITTEN BOOKS AND OTHER ACTIVITY
The author has written alone 4 monographs and 2 as co-author. Here in
a few photos are presented its front covers Figs 89-92.

10.1. Recommendations.
Separate domain of author’s activity and publications, besides of above
shown books, constitute popularization of new ideas and technologies:
- known lightweight structures,
- evaluation of known structural systems,
- new structural systems, materials, theories, method of analysis and
synthesis.
To this category of papers belongs e.g. Refs 117,123, 142, 148, 162,
167,177, 229, 242, 246, 248, 251, 253 etc.

11. CONCLUSIONS

These all own elaborated theories, algorithms and programs permit
nowadays, together, to design much better then in the past. But the man
— user and designer, is there still in central point of each technical
project.

Short review of mentioned above problems permit on formulation of the

following principal conclusions.

1. In many tasks it is possibility to analyze the structures much more
exactly, applying better, proposed here uniform theory.

2. The critical state of loading can be calculated for any set of combined
loadings. It is possible to find there the critical curves and even

critical surfaces. It is possible for composite bars, too Refs 225, 227,
170.

3. Application of Finite Differences Method seriously is extending a
range of possible solutions.

4. 1t is now evident, that nowadays methods of analysis should be
revised and completed by some elements of presented above theory.
It should significantly improve safety of designed structures.

5. There, are recommended theories and programs elaborated by author.

6. This large paper can be, after improving and extending, certain
skeleton of a monograph about possible modern analysis of mainly
bar structures.

7. In this paper, the more important remarks and conclusions are
presented, only.

8. At last, it should be pointed, that nowadays, in standards torsion and
bimoment are almost completely neglected.

9. Moreover, there is big tendency to eliminate from dimensioning
process of stresses calculations. It all together, appears as highly
dangerous.

10. Besides experiences with mentioned above performed own
programs, effectively were applied some commercial programs as
ROBOT, Math-CAD, EXCELL, etc. which can be used for
complicated calculations and results presentation of many tasks.
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J.B. Obrebski — conception and construction; Konrad Obrebski —
architecture), Ref 166, 167.



Fig. 89. Doctor and Habilitation thesis of the author, Refs 4, 11
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Fig. 9. Two ditions of the book on static of structural bar roofs,
Refs 28, 29
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Fig. 92. Lecture notes — “Strength of Materials” Ref 5, and exémple
of 4" proceedings of the International Colloguium on Lightweight
Structures in Civil Engineering, Warsaw, 1998, Ref 36.
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180. J.B. Obrebski, M.Z. Obrebski: Geometry of node for UNIDOM
space bar system. XIII LSCE - Lightweight Structures in Civil
Engineering - Contemporary Problems, Local Seminar of IASS
Polish Chapter, Warsaw, 7 December, 2007, pp.61-64.

181. 1.B. Obrebski: Information about the book of Wojciech Zabtocki
»Architektura Architecture”. Xl LSCE - Lightweight Structures in
Civil Engineering - Contemporary Problems, Local Seminar of
IASS Polish Chapter, Warsaw, 7 December, 2007, pp.153-158.

182. J.B. Obrgbski: Przyktady komputerowego opracowania wynikow
badan elektrooporowych, (Examples of results elaboration by
komputer for elektro-resistance measurements). WAT, XII edycja
Szkoty -Komputerowego Wspomagania Projektowania,
Wytwarzania i Eksploata-cji”. Jurata 12-16.05.2008r.

183.  J.B. Obrgbski: Z. Urbaniak: Przyktady metod pomiaru i
opracowania wynikow badan elektrooporowych dla pretow
cienkos$ciennych, (Examples of measurement methods and results
elaboration of elektro-resistance method for thin-walled bars).
XXII Sympozjum Mechaniki Eksperymentalnej Ciata Statego,
Jachranka, 15+18 pazdziernika 2008 (23 Symposium on
Experimental Mechanics of Solids, Jachranka, Poland, October
15+18, 2008)

Papers publisher in proceedings of foreign conferences

184. J.B.Obrebski: Application of the WDKM Program System to
Analysis of Space Structures. 3d Int. Conf. on Space Structures
(poster), Guildford, UK, 1984 Sept.11-14.

185. J.B.Obrebski: Second Order and Second Approximation Theory in

Statics and Dynamics of Thin-Walled Straight Bars. Proc. 1st Int.

Conf. on Lightweight Structures in Architecture, Sydney 24-29 Aug.

1986, Unisearch Limited, The University of New South Wales, vol.2,

pp.815-822, ISBN 85823 558 7(v.2).

J.B.Obrebski: New Approach to Geometrically Non-Linear Problems
in Statical and Dynamical Analysis of Large Elastic Thin-Walled Bar

186.

Structures. Proc. of the Int. Colloquium on Space Structures for Sports
Buildings. Science Press, Beijing (Pekin), China and Elsevier Applied
Science, London, 27-30 Okt.1987.

187. J.B.Obrgbski, Z.Urbaniak: Experimental Analysis of Non-Linear
Effects of Bending-Torsion Loaded Thin-Walled Bars. 18th Yugoslav
Cong. of Theoretical and Applied Mechanics. Vrnjacka Banja,
30.05-3.06.1988.

188. J.B.Obrghski: Family of Spherical Domes With Two-Level
Repeatability. IASS Symposium on Innovative Applications of Shells
and Spatial Forms. Bangalore, India, 21-25 Nov.1988.

189. J.B.Obrebski: Difference Equations in Analysis of Repeatable
Structures. Int. IASS Congress, 11-15 Sept. 1989, Madrid, Spain.

190. J.B.Obrgbski: Numerical Dimensioning of Large Steel Space
Frames. Intern. Conf. on Steel Structures and Space Frames 15-16 Feb.
1990. Singapore. CI-PREMIER.

191. J.B.Obrgbski: Menace of Thin-Walled Structures by Defects. Int.
Conf. on Modern Techniques in Construction, Singapore, 27-28 March
1990, CI-PREMIER.

192. J1.B.Obrgbski: Selected Problems of Stress Analysis for Thin-Walled
Bars. 19th Yugoslav Congress of Theoretical and Applied Mechanics.
Ohrid, May 28 -Jun 1, 1990, Yugoslav.

193. J.B.Obrebski: Influence of Constructional Solutions on Stress
Distribution in a Bars of Thin-Walled Space Structures. Int. 1ASS
Conf., Dresden, Germany, 10-14 Sept. 1990.

194. J.B.Obrebski, M.E.ElI-Awady: On the Optimal Designing of Some
Families of Thin-Walled Bars. Int. IASS Symp. 2-6 Sept. 1991,
Copenhagen, Denmark.

195. J.B.Obrgbski, Z.Urbaniak, M.E.El-Awady: On Designing of the
Thin-Walled Bars in the Light of Theory and Experiments. Int.
IMEKO-GESA Symp. on Risk Minimisation by Experimental
Mechanics, 2-30.04.1992, Diisseldorf, FRG.

196. J.B.Obrebski: On the Conception of the Family of Spherical Domes
with Two-Levels of Repeatability. Int. IASS-CSCE Congress
13-17.7.1992, Toronto, Canada.

197. J.B.Obrgbski, Z.Urbaniak:  Experimental and  Numerical
Investigations of Certain Class of Thin-Walled Bars. NUMEG'92
(Numerical methods in Geomechanics), 2-4.09.1992, Prague, CSFR.

198. J.B.Obrgbski: Analysis of Thin-Walled Space Bar Structures. Int.

IASS Symposium, 24-28 May 1993, Istanbul, Turkey.

J.B.Obrebski: Thin-walled Structures Failure in the Light of
Experiments. 3d Int. Conference, Lessons from structural failures.
Praha, June 1993.

200. J.B.Obrebski: Non-Conventional Description of Complicated Space

Structures . Fourth Int. Conf. on Space Structures, University of Surrey

Guildford, UK, 6-10 Sept.1993.

J.B.Obrebski: On Nonlinearities in Analysis of Thin-Walled Bar
Structures. SEIKEN-IASS Symposium on Nonlinear Analysis and
Design for Shell and Spatial Structures. (Invited lecture), Tokyo,
Japan, Oct.20-22,1993,

J.B.Obrgbski: Part and effects of bimoment in analysis and
dimensioning of thin-walled bar structures. The Seventeenth Czech
and Slovak Int. Conference on Steel Structures and Bridges, Bratislava,
Slovakia, 09.1994.

203. J.B.Obrebski, M.E.El-Awadi: Imperfections and Thin-Walled Bars

Behaviour. Int. 1ASS Symp'94 / ASCE Structures Congress XII,

24-28.04. 1994, Atlanta, USA.

JB.Obrebski: On the Morphology of Certain Class of
Two-Curvature Structures: Int. IASS Conf, Stuttgart 8-9.10.1994.

J.B.Obrebski: On the strength of composite bars. Int. IASS Symp.
Spatial Structures: heritage, present and future. Milan, 5-9.06.1995,
pp.517-526.

206. J.B.Obrgbski: Some torsion problems of composite bars. Migdzyn.

Seminarium Wydz. IL PW - Dniepropietrowsk (Ukraina),

Dniepropietrowsk 06/07 1995. OWPW Warszawa 1995, pp.251-262.

J.B.Obrebski: Stability of composite straight bars. Migdzyn.
Seminarium Wydz. IL PW - MISI Moskwa, 09.1995. OWPW
Warszawa 1995, pp.101-110.

208. J.B.Obrebski: Programs for strength analysis of composite bars. Int.
Sc. Conf. on Numerical Methods in Continuum Mechanics. Sept.16-
18, 1996, High Tatras, Stara Lesna, Slovakia, pp.81-85.

199.

201.

202.

204.

205.

207.



209. J.B.Obrebski: State-of-the-art in conceptual design of lightweight
structures. Int. IASS Symp. on Conceptual Design of Structures, Oct.
7-11, 1996, Stuttgart, Germany, pp.721-728.

210. J.B.Obrebski: NAAS-CLASS - system for Nonlinear Analysis And
Synthesis of  Complicated Large Advanced Space Structures.
NAFEMS World Congress'97, Universitdt Stuttgart, 9-11.04.1997,
pp.438-449.

211. J.B.Obrebski: Theoretical analysis of response some bar type
structures on wind loadings. 2nd European & African Conf. on Wind
Engineering 2EACWE). Genova, Italy 22-26.06.1997, pp.1189-1196.

212. J.B.Obrgbski: On experimental Investigations for thin-walled bars
and thin-walled structures. Proc. of the Int. Conf. on Experimental
Model Research and Testing of Thin-Walled Structures. Sept.1997,
Praha, Czech Republic, pp.353-361.

213. J.B.Obrebski: Influence of Local Bar Instability on Strength of Large
Double-Curvature Bar Structures. (Invited lecture 30min). Int. IASS
Colloguium on Computation of Shell & Spatial Structures, 5-
7.11.1997, Taipei, Taiwan, pp.414-419.

214. ].B.Obrebski, J.Grzedzielski: On the space structures with Golden
Proportion of their elements, IASS Int. Symp. on Shell & Spatial
Structures, 10-14.11.1997, Singapore, pp.661-670.

215. J.B.Obrebski: Computer application in some experimental stress

analysis. XXXVI International Conference on Experimental Stress

Analysis, EAN'98, Podbanske, Slovakia 2-4. June 1998, (patrz B.1.9).

J.B.Obrebski: Mechanics and strength of composite space bar
structures. (General lecture 30min) Intern. IASS Congress on Spatial
Structures in New Renovation Projects of Buildings and Constructions.
Moscow, Russia, 22-26 June 1998.

217. J.B.Obrebski, A.H.Fahema: Advantages in shape and form finding
for wide class of space bar structures. Structural Engineering World
Congress (SEWC), Structural Engineering World Wide, San Francisco,
18-23 July, 1998, Elsevier, Amsterdam-Lausanne-New York-
Oxford-Shannon-Singapore-Tokyo, ISBN 0-08-042845-2 (Abstracts
volume p.668) & CD-ROM with papers.

218. J1.B.Obrgbski, A.H.Fahema, M.H.Rhuma, Programs for numerical

dimensioning and optimization of space bar vaults and domes. LSA'98

Congress, Lightweight Structures in Architecture Engineering and

Construction, 5-9 October, 1998, Sydney, Australia, Published by

LSAA, ISBN 09586065 2 8 (vol.1), pp.517-526.

J.B.Obrebski: Some rules and observations on the composite bar
structures mechanical analysis. Int. IASS 40th Aniversary Congress.
Madrid, 20-24 September, 1999.

220. J.B.Obrebski: Mechanical point of view on modelling of space

structures made of composite bars. Int. IASS Symp. Istanbul, 29.05-

2.06.2000, pp.491-500.

J.B.Obrebski: Nonlinear character of the computations of composite
bar structures. (Keynote lecture) Proc. of Fourth Int. Colloquium on
Computation of Shell & Spatial Structures, June 4-7,2000, Chania-
Crete, Greece, CD-ROM 20 pages & abstracts vol.pp.558-559.

222. ].B.Obrebski, N.Jankowska: Numerical analysis of internal forces

disposition in nodes of thin-walled frames. Proc. of Fourth Int.

Colloquium on Computation of Shell & Spatial Structures, June 4-7,

2000, Chania-Crete, Greece CD-ROM 10 pages & abstracts vol.pp.80-

81.

J.B.Obrebski, R.Szmit: Dynamics and dynamical stability of tall
buildings, (Invited lecture 30min). Int. Conf. ICSSD, Taipei, Taiwan,
Dec. 7-9.2000, pp.85-94.

J.B.Obrebski: On procedures for shape and form finding on example
of some families of space bar structures. Int. IASS WG 15th Structural
Morphology Conf. Delft, Netherlands, 17-20.08.2000, pp. 123-130.
225. ].B.Obregbski: On the mechanics and strength analysis of composite

structures. (Invited paper 30min.) Structural Engineering, Mechanics
and Computation, Cape Town, 2-4.04.2001, Edited by A.Zingoni,
Elsevier Science Limited, Amsterdam-London-New York - Oxford
- Paris- Shannon — Tokyo, 2001, pp.161-172.

226. J.B.Obrebski: Examples of non-conventional analysis for composite
bar structures. The 7™ International Conference on Modern Building
Materials, Structures and Techniques. Wilno, Litwa, 16-18 May, 2001
pp. 289-290 & CD-ROM.

227. J.B.Obrebski: Some new applications of the theory of thin-walled
bars. 3-rd Intern. Conf. on thin-walled structures, Krakéw 5-7.06.2001,

216.

219.

221.

223.

224.

Edited by J.Zaras, K.Kowal-Michalska, J.Rhodes, Elsevier Amsterdam
— London — New York — Oxford — Paris — Shannon — Tokyo, pp.321-
328.

228. J.B.Obrebski: On evaluation of the accuracy for designing process of
composite structures. International 9™ Ukrainian-Polish Seminar on
Theoretical Foundations of Civil Engineering. 27.06-1.07.2001,
pp.505-516.

229. J.B.Obrebski: On mechanical behaviour of space bar structures built
of elements having golden proportions. International IASS Symposium
, Nagoya, Japan, 9-14.10.2001, 232-233 +CD-RO6.

230. J.B.Obrgbski: Thin-walled bars and structures — contemporary
problems. Intern. Conf. on Lightweight Structures in Civil Engineering.
24-28.06.2002, Warsaw, Poland, pp.487-496

231. J.B.Obrebski:New mechanical problems in analysis of composite
bars space structures. Intern. Conf. on Lightweight Structures in Civil
Engineering. 24-28.06.2002, Warsaw, Poland, pp.926-935.

232. J.B.Obrgbski: Examples of 3D-Time space application for dynamical
analysis of structures. Intern. Conf. on Lightweight Structures in Civil
Engineering. 24-28.06.2002, Warsaw, Poland, pp.936-945

233. J.B.Obrebski, A.H.Fahema: Comparison of double curvature space
bar structures using SPES computer programs. Intern. Conf. on
Lightweight Structures in Civil Engineering. 24-28.06.2002, Warsaw,
Poland, pp.967-973.

234. J.B.Obrebski: Remarks on Influence of Design Solutions on the
Space Bar Structures Mechanical Behavior. Fifth International
Conference on Space Structures, University of Surrey, Guildford,
Surrey, UK, 19-21 August 2002. pp. 1169-1178.

235. J.B.Obrebski: On strength calculations of composite wooden bars.
Fifth International Conference on Space Structures, University of
Surrey, Guildford, Surrey, UK, 19-21 August 2002. pp. 217-226

236. J.B.Obrgbski: Applications of uniform criterion for geometrical
unchengeability, stability and dynamic stability of structures.
(Invited lecture). Int. Conf. ICSSD, Singapore, Dec. 16-18.2002,
pp.70-79. (10 pages, 1010)

237. J.B.Obrebski - Approaches to dynamics of bar structures. Int.
Conf. ICSSD, Singapore, Dec. 16-18.2002, pp.254-259. (6 pages, |
011)

238. J.B.Obrebski: Advantages of 3D-Time Space Description for
Dynamical Analysis of Structures. (Invited Paper - 12 pages).
International Conference IASS-APCS, Taipei, Taiwan, 22-25.10.
2003, 40-41 +CD-ROM.

239. J.B.Obregbski: Designing principles of lightweight structures.

International Conference IASS-APCS, Taipei, Taiwan, 22-25.10.

2003, pp. 240-241.

J.B.Obrebski: Some New possibilities for dynamical analysis of
structues. The 8" International Conference on Modern Building
Materials, Structures and Techniques. Vilnius, Lithuania, 19-21 May,
2004.

J.B.Obrebski: Examples of some parameters influence on bridges
behaviour under moving loadings. The Second International
Conference on Structural Engineering, Mechanics and Computation, 5-
7 July, 2004, Cape Town, South Africa, A.A.Balkema Publishers
Leiden/London/New York/Philadelphia/Singapore. ~Abstracts vol.
p.171, CD — pp. 859-864.

J.B.Obrebski: Some trends and advantages of wood application in
contemporary civil engineering. (Invited lecture) The Second
International Conference on Structural Engineering, Mechanics and
Computation, 5-7 July, 2004, Cape Town, South Africa, A.A.Balkema
Publishers Leiden/London/New York/ Philadelphia/ Singapore.
Abstracts vol. p.14, CD — pp. 73-81.

243. ].B.Obrebski: Observations on rational designing of space

structures. Intern. IASS Symposium on Shell and Spatial Structures

from Models to Realization. Sept. 20-24, 2004, Montpellier, France.

J.B. Obrebski, P. Kierzkowski, J. Tolksdorf : Analysis of
ellipsoidal concrete dome for sport hall designed in almost moment-
less state. Intern. IASS Symposium on Shell and Spatial Structures
from Models to Realization. Sept. 20-24, 2004, Montpellier, France.

J.B.Obrebski: Some examples of space structures morphology
based on bars golden proportions. Intern. IASS Symposium on Shell
and Spatial Structures from Models to Realization. Sept. 20-24, &

240.

241.

242.

244,

245.



5™ Structural Morphology Seminar Sept. 17-18, 2004, Montpellier,

France.

J.B.Obrebski: Some approaches to rational designing of space bar
structures, (Invited lecture). Proceedings of the 5 International
Conference on Computation of Shell and Spatial Structures, June 1-
4, 2005 Salzburg, Austria, p. 167.

247. ].B.Obregbski: Observations on exactness of structures numerical
analyses. Proc. IASS Int. Symp. on Theory, Technique, Valuation,
Maitenance, Sept. 6-9, 2005, Bucharest, Romania, pp. 115-122.

248. ].B.Obrebski: Lightweight Structures in Civil Engineering —
Development, State-Of-The-Art, Tendencies,Advantages, Weak
Sides. (Invited lecture) The Third Saxonian Middle- and Est
Europa Day, organized by the Dresden University of Technology.
One of the 12 Workshops in parallel sessions: "Light Weight
Construction, Innovation by Technical Integration”,  Drezno
16.06.2006 (no information about printing).

249. J.B.Obrebski: Some Own Approaches to Computer Aided Design
of Complicated Bar Structures. The 10" World Multi-Conference
on Systemics, Cybernetics and Informatics. Orlando, Organized by
International Institute of Informatics and Systemics, Florida, USA
16-19.07.2006, pp.255-260.

250. J.B.Obrebski: UNIDOM - Proposal of the system for space bar
structures. IASS-APCS 2006 Beijing, China, New Olympics, New
Shell and Spatial Structures, 15-19.10.2006, pp.86-87, and CD-
ROM.

251. J.B. Obrebski: Development and state-of-the-art of Lightweight
Structures in Civil Engineering. Proc. Of the Third Intern. Conf. on
Structural Engineering, Mechanics and computations. 10-12
September 2007, Cape Town, South Africa, abstract pp. 281-282 +
CD ROM.

252. ].B. Obrebski: Torsion in analysis of space bar frames — review
and discussion. (Invited Paper). Proc. Of the Third Intern. Conf.
on Structural Engineering, Mechanics and computations. 10-12
September 2007, Cape Town, South Africa, abstract pp. 49-50 +
CD ROM.

253. J.B. Obrebski: Lightweight structures in civil engineering —
trends, advantages, problems. (Invited Speaker),  Structural
Engineers World Congress 2007 (SEWC 2007). The third Congress
dedicated to the “art, science and practice of structural
engineering”. November 2-7, 2007, Bangalore, India.

254. ].B. Obrebski: More on morphology of UNIDOM space bar
system. Structural Engineers World Congress 2007 (SEWC 2007).
The third Congress dedicated to the “art, science and practice of
structural engineering”. November 2-7, 2007, Bangalore, India.

255. J.B. Obrebski: Accuracy of designing process in the light of

contemporary knowledge. Proc. of IASS 2007 International

Symposjum, on Shell and Spatial Structures: StructuralArchitecture

— Towards the future looking to the past. 3-6 December 2007,

Venice, Italy, abstract pp. 263-264 + CD ROM.

J.B. Obrebski: Multi parametrical instability of straight bars,
Proc. of IASS-IACM the 6th International Conference on
Computation of Shell and Spatial Structures, Cornell University,
28-31 May 2008, Ithaca, USA

J.B. Obrebski: Geometry, examples and architectural aspects of
the family of two-curvature space bar structures, IASS- ,
Acapulco, Mexico, 2008
258. J.B. Obrgbski: Geometrical fundations and architectural

possibilities of UNIDOM space bar system, IASS-2008, ACA,
MEX, the International Symposium on: New Materials and
Technologies, New Designs and Innovations — A Sustainable
Approach to Architectural and Structural Design; October 27-31,
2008, Acapulco, Mexico.

246.

256.

257.

Supervised Master degree diplom works

259. Janusz Swiszulski: Analiza wytrzymatosciowa struktur plaskich
zbudowanych z pretow o zlozonych przekrojach poprzecznych.
(Strength analysis of plane structures butli of bars with composed
cross-sections),Warsaw, 1976.

260. Barbara Wisniakowska: Analiza numeryczna metoda réwnan
réznicowych budynku o szkielecie wspolpracujacym z plytami.
(Numerical analysis of buildings with skeleton cooperating with

plater). Poltechnika Warszawska Wydzial Fizyki Technicznej i
Matematyki Stosowanej. Warsaw, 1976 (reviewer — prof. .G.
Rakowski).

261. Lidia Bogdanska: Analiza numeryczna metoda rownan réznico-
wych elementu plytowego wspoltpracujacego z konstrukcja budynku.
(Numerical analysis of plate element cooperating with building
skeleton). Politechnika Warszawska Wydziat Fizyki Technicznej i
Matematyki  Stosowanej, Warsaw, 1976, (reviewer - prof.
G.Rakowski).

262. Bogdan Zbyszyfski: Analiza statyczna przekrycia strukturalnego.
(Static analysis structural roof). Politechnika Warszawska IMKI. (co-
supervisor from C.O.B.P.KM. ,Mostostal” — dr inz. Andrzej
Czechowski). Topic proposed by Designing Office of Mostostal
(C.0.B.P.K.M.). May 1978, Warsaw.

263. Wojciech Stabosz: Wytrzymato$ciowa analiza numeryczna struktur
obcigzonych symetrycznie lub antysymetrycznie. (Numerical strength
analysis of structures loaded symmetrically or unsymmetrically).
Warsaw University of Technology, IMKI. Warsaw, 1978, (reviewer -
prof.J.Karczewski.).

264. Mirostaw Kowalski: Analiza wptywu sposobu podparcia struktury
na jej no$no$c. (Analysis of influence of structure supporting manner
on its capacity). Pol. Warsz. Teoria Kontr. Warsaw, 1979, (reviewer -
prof. J.Karczewski).

265. Dorota Zakrzewska: Wyznaczanie sztywno$ci —ortotropowego
plaskiego superelementu stropowego lub $ciennego. (Determination of
rigidity for flor or wall superelement). Warsaw University of
Technology, Warsaw, 1981.

266. Zdzistaw Urbaniak: J.B.Obrebski — consultant of M.Sc. degree
diploma work on strength and designing of thin-walled bridge girder
with orthotropic plate. Supervisor - prof. H.Czudek. Warsaw, 1983.

267. Leszek Ficenes: Analiza wytrzymatosciowa wybranych profili
cienkosciennych wedlug teorii drugiego przyblizenia. (Strength
analysis selected thin-walled profiles by theory of secondo
approximation). Warsaw University of Technolgy IMKI. Warsaw.
27.06.1984.

268. Jolanta Kobylinska: Drgania gictno-skretne —cienkosciennego
dzwigara mostowego wymuszone obcigzeniem aerodynamicznym.
(Bendig-torsion vibrations of bridge girder excited by aerodynamical
loading), 22.10.1986, Warsaw.

269. Marcin Majdecki: Program dydaktyczny do obliczania wielkosci
statycznych ustrojow plytowych metoda réznic skonczonych.
(Didactic program for analysis statical quantities by Finie Differences
Metod). ART Olsztyn Wydziat Budownictwa Ladowego. 06.1992.

270. Piotr Srokosz: Program dydaktyczny do obliczania tarcz metoda
roznic skonczonych. (Didactic program for calculation of shields by
Finie Differences Metod). ART. Olsztyn Wydziat Budownictwa
Ladowego. Olsztyn 1993.

271. Magdalena Kruk: Wzory transformacyjne metody przemieszczen
dla wybranych zagadnien dynamiki i teorii drugiego rzedu
cienko$ciennego preta prostego. (Phisical relations of displacement
metod for selected problem sof dynamice and theory of second order
for thin-walled straight bar). Warsaw University of Technology,
IMKI. 15.03.1993.

272. Pawel Flont: Badanie doswiadczalne stanu odksztalcenia i
naprgzenia pewnej klasy pretow cienkosciennych. (Experimental
investigations certain class of thin-walled bars). Warsaw University
of Technology, IMKI, 06.1995.

273. Leszek Bihun, Wojciech Kruk: Rekonstrukcja dokumentacji

istniejacego budynku WNT, UWM w Olsztynie z uwzglednieniem

wstepnej koncepcji rozbudowy. (Reconstruction of documentation of
existing building of Faculty of Technical Sciences, Warmia and

Mazury University, taking into consideration preciminary conception

of expansion). ART Olsztyn, Wydzial Budownictwa Ladowego.

24.09.2003, (reviewer dr. L.Matyszko).

Jan Tolksdorf: Projekt hali sportowej — eliptyczna powloka
zelbetowa. Czg$¢ L. (Project of sport hall — elliptical reinforced dome.
Part 1). ART Olsztyn Wydzial Budownictwa Ladowego. Supervisor
J.B.Obrebski; Consultant prof. M.Knauff. 25.05.2004, (reviewer dr
L. Matyszko).

275. Pawel Kierzkowski,: Projekt hali sportowej — konstrukcja wsporcza
powloki i trybun. Czgs¢ 1. (Project of sport hall — supporting structure

274.



for dome and stands. Part Il). ART. Olsztyn Wydziat Budownictwa
Ladowego, dyplom wspolny z J.Tolksdorfem (see Ref 274),
Consultant J.B. Obrebski; supervisor prof. M. Knauff. 25.05.2004,
(reviewer dr L. Matyszko).

Supervised Ph. D. disertations

276. Zdzistaw URBANIAK: Nieliniowa analiza cienkosciennych pretow
pryzmatycznych metoda iteracyjna. (Nonlinear analysis of thin-walled
prismatic bars by iterativa metod). Open: ~ 13.05.1987

277. Mohamed Essam EI-AWADI Mohamed El-Hadi: Influence of
chosen structural parameters on stability and strength of thin-walled
bars, (Wptyw wybranych parametréw konstrukcyjnych na stateczno$é
i wytrzymato$¢ pretow cienko$ciennych). (Procedure and dissertation
in English), (Reviewers:  prof. dr hab.inz. Zbigniew.Kowal, Pol.
Swietokrz.; prof. dr hab. inz Jan Karczewski Pol.Warsz.). open -
28.11.1990, defence - 24.03.1993, accepted 31.03.1993.

278. Lestaw KWASNIEWSKI: Wyznaczanie obcigzen krytycznych
pretow cienkosciennych przy zastosowaniu szeregdw potegowych.
(Determination of critical loadings for thin-walled bars by application
of Power series). (Reviewers: dr.hab.inz.Mieczystaw Wieczorek prof.
n. WAT; dr hab.inz. Andrzej Gomulinski prof. Politechnika
Warszawska). open: 20.12.1995; defence - 23.10.1997.

279. Abdulmunaem Hamsuna FAHEMA: Shape and form finding for
certain class of two curvature space bar structures. ( Poszukiwanie
ksztattu i formy dla pewnej klasy dwu-krzywiznowych pretowych
konstrukcji przestrzennych), (Procedure and dissertation in English),
(Reviewers:  dr hab.inz. Pawel Sniady, prof. n. Politechniki
Wroclawskiej; dr hab. inz. Tomasz Lewinski, prof. n. Politechniki
Warszawskiej; open - 30.04.1997; defence - 24.11.1999; accepted
15.12.1999.

280. Masaud Harakat RHUMA: Optimization of space bar structures
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