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  ABSTRACT:   In this year the author reach his age of 65. Therefore, it is proper moment to present whole his scientific achievements 

accumulated during the last 42 years of professional life and 39 years of scientific activity, oriented at all on bar structures. There, we can 

find investigations related to: analytical approaches of plane bar grids and double layer trusses: plane cylindrical and spherical; very 

general and effective theory for space bar structures, fundamental theory - common for single straight bars with any cross-sections, as well 

with thin-walled or full cross-sections (compact or solid, too); homogenous or composite. Moreover, the theory concern of global physical 

relations for whole bar (displacements of ends to internal forces) and stress calculations. The analysis can be led in the range of static, 

dynamics or dynamical-stability. At last, were proposed some analytical, numerical and hybrid effective approaches to solutions of very 

wide class of structures – practically with almost any: scheme, loading and support systems. Were considered motionless and moving 

loadings for bridges or airstrips, etc., too. In this algorithms were used originally elaborated Difference-Matrix Equation Method, new 

application of Finite Differences Method – 3D Time Space Method for dynamics and even application of standard commercial MS Excel 

tool. The theories were verified by certain own experimental researches. 

  Besides wide activity, concerning of mechanical behaviour of bar structures, was proposed by author some ideas concerning of 

morphology of bar structures oriented on large span roofs – plane and double-curvature - domes, including in it so called UNIDOM space 

bar system. 

  Summarizing above short enumeration of solved tasks, it seems, that it is worthy to give such review and present it in one publication. 
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1. INTRODUCTION 

The paper presents short characteristics of scientific achievements and 

complete list of publications of the present author in 65 year of his life. 

The sequential chapters try to give more important information about 

the subject and domains of his activity, obtained results and to show 

importance of its application for civil engineering. 

 

All scientific and professional activity are concentrated on providing 

new, better, complex theories for description, analysis and synthesis of 

as well single straight bars and first of all large, complicated space bar 

structures, too. All theories are oriented on computer methods and are 

applied in several dozen own prepared computer programs and systems. 

 

The author was working several dozen years on designing of own 

computer systems with different destinations and its automation, all 

based on elements of own theories. They were produced mainly for 

scientific reasons Refs 30, 32, 35 etc. and are very effective, but never 

were of commercial destination. So, the paper presents experiences in 

domain of exploitation these computer program systems, destined for 

designing of various types of mainly large space bar structures. Most of 

these programs were oriented on large span roofing systems like: flat 

double layer bar structures, vaults and domes. They are enabling 

analysis and synthesis of many types space bar structures. Some of they 

provide automatic dimensioning of bars cross-sections, shape and form-

finding of whole structures, with even optimisation elements. The bars 

of these structures can have any boundary condition. There are possible 

analyses: static, dynamic, stability and dynamical stability. Some other 

programs are oriented on experimental and theoretical analyses of 

particular bar with thin-walled or full- homogenous or composite bars. 

In these programs were applied mainly own, original theories from 

domains: strength of materials Ref 35, thin-walled bars Refs 16, 30, 32, 

composite bars Refs 16, 30, 32, 35, etc., space bar structures e.g. Refs 

1-5, 8-21, 28, 29, 252 etc. or 3D-Time Space Method (3D-TSM) for 

dynamics Refs 223, 236-238, 241 and numerical algorithms Refs 4, 5, 

7,8,9, 18, 28, 29 etc. 

 

Certain concise inspection and classification of whole activity of author 

are giving following keywords, grouped in some categories: 

 analysis, synthesis, experiments, computer programs, theories, thin-

walled, composite structures, bars, straight bars,  

 uniform, theory, static, dynamics, stability, dynamical stability. 

strength of straight bars, moving loads,  

 complicated, space bar structures, geometry, family, two-curvature, 

bar domes, regularity, wavy domes, free form, 

 space bar system, UNIDOM, architectural forms,  

 Computer Aided Design, numerical, comparisons, tests, evaluate, 

exactness, errors, safety. 

 

2. EXPERIMENTAL ANALYSIS OF BAR STRUCTURES 

Experiments permit to verify accuracy of taken assumptions for theories 

and obtained analytical or computer results. For the same reasons the 

author was starting his experimental researches. 

 

The theoretical investigations of thin-walled bars and frames behaviour 

were supported by some experiments presented in literature, where to 

worthy of mention belong: 

 

□ experiments for single thin-walled bars with open cross-section, 

executed by V.Z.Vlasov Ref 311 (1940),  

□ for thin-walled rolled bars with open cross-sections, led by 

A.I.Strielbickaja, Refs 306-308 (1958, 1964, 1968), 

□ for straight cantilever beams with open or closed box type cross-

sections, J.B.Obrębski Ref  30 (1991), Ref  35 (1997) Figs 1-9, 

□ for plane frames composed of 2 or 3 bars, N.Jankowska (Ph.D. thesis, 

supervised by   J.B.Obrębski, Ref 282 (2006), Figs 14-16, 

□ for determination of critical bimoment value, (J.B.Obrębski with M.E. 

El.Awadi, Egypt, Refs 82, 194, 203, 277 (1992, 1993) Figs 10-13. 



In authors some papers, the attention was focused on electro-resistance 

methods of measurements and on different approaches to elaboration of 

obtained results. Moreover, there are compared results of investigations 

presented in the book of A.I.Strielbitska and G.I. Jewsiejenko and the 

other own measurements done much later together with S.Wichniewicz, 

Z.Urbaniak, P.Flont, N.Jankowska and  by A.Glinicka – all concerning of 

some thin-walled elements used by designing of civil engineering 

structures. There, are discussed applied methods of measurements, 

manner and form of elaborated results. Special attention was turned on 

advantages following of commercial program MS Excel application. 

 

2.1. Behaviour of cantilever beams under combined loadings 

The problem was discussed in some lectures presented by author in 

period of years 1988-2004. Lately author was coming back to wider 

elaboration of obtained very wide and numerous measured data. 

 

The experiments, concern of cantilever beam behaviour under bending-

torsion loading. The outlook and scheme of experiment are given in the 

Figs 1-6. As specimen were used of natural scale brazen thin-walled 

bars with approximate dimensions 10x20x196cm with walls thicknesses 

0.5mm, 1.5mm and 2.5mm. There were measured strains in two cross-

sections (in distance of 2 and 55cm from fastening), displacements and 

load capacity of the bar. Moreover, behaviour of the bar was observed 

and documented carefully. There were investigated 17 bars. From it, 13 

with vertical position (as in Figs  3-6) and rectangular cross-section 

(together with Z. Urbaniak) and 4 with horizontal orientation (together 

with P. Flont, Ref 272). So, we can confirm, that before bar damage 

(breaking) were appearing some waves by fixed point (Figs 4c,6-8,10c) 

in both bar sides and in bottom wall. Some waves appear at loaded bar 

end, where longitudinal displacements were constrained by rigid cork, 

Figs 4C, 10c.  

 

The electro-resistance measurements were executed by J.B. Obrębski 

and Z. Urbaniak in years 1988-96 (Refs 75, 76,79, 81, 82, 83, 85, 119, 

183, 195, 197)  on series of 10 thin-walled cantilever beams with 

rectangular cross-section mentioned above. Measurements were 

executed by means of two manually operated electro-resistance 

Wheatstone bridge devices with six distribution boxes for changing up 

to 132 electric channels for particular sensors. Zeroing of electro-

resistance bridges for each sensor was done manually, rotating 

handwheel. The readings were manually taken down to tables, with 

columns for each loading level and rows for each sensor. In separate 

tables for longitudinal, cirquital and for oblique sensors.  

 

 

  
Fig. 1. Author by his stand 

 
Fig. 2. Stand with brazen cantilever model 

 

The beams were loaded up to breaking. Dependently on thickness of bar 

walls were given loading levels: N=8-12 (brazen walls 0.5mm), N=13-

20 (walls 1.5mm), N=14-18 (walls 2.5mm) Ref 183.  

 

The other experiments were performed by P.Flont (supervisor J.B. 

Obrębski), on 4 similar cantilever beams with identical cross-section 

(thin-walled, open or closed). The longitudinal slit or closing were 

placed at top Ref. 272. Applied schemes of beams were identical as in 

previous, above experiments, Fig 4A. Results were elaborated manually.  

 

 
Fig. 3. View on stand for bending-torsion loading of 

rectangular cantilever brazen beam. Four steel frames helpful 

by measurements of displacements are visible.  

 

A)

    

B)  C)

 
Fig. 4. Scheme of experiment of the Figs 2,3. A) Two applied schemes 

for cantilever beams: without constrains at free end a) and with planarly 

constrained displacements b),  with rectangular cross-sections: open c) 

or closed d). B, C) Loading system for thin-walled bars. 

 

 
Fig. 5. Cantilever beam and electro-resistance (tissue paper) sensors 

arrangement (detail A) 

 

During this type of experiments, were carefully observed developments 

of waves on side walls of bars, open and closed. Moreover, there were 

measured: deflections, rotations, strains, load capacity. Next, were 

compared calculated and measured values of bimoment. 

 

Specially, interesting is photo of the Fig 8A, where are compared similar 

four bars, with identical thickness of walls (0.5mm). Two of them have 

open cross-section and bar opposite end (“free”- loaded), at all free or 

constrained by cork. Similarly, two next bars had have closed cross-

section and bar opposite end free or constrained by cork, too. 

 



A)

  
 

  

B)

 
Fig. 6. A) Scheme of optical observation of circuital and longitudinal 

displacements; B) visible: cantilever beam and steel frames; at left – 

fastening and hinge (breaking point) 

 

 

There is interesting different distance of breakings from fixed end (at 

down) and its inclination. Here we shall remember that for open type 

cross-sections, sectorial stresses are much higher. Simultaneously, 

disposition of longitudinal normal stresses for bars with open and closed 

cross-sections are dramatically other. Therefore, it results in other 

behaviour of the bars, shown in the Fig 8A. Additionally, the positions 

of hinge at lower edges of the bar can be explained by different 

diagrams of bimoments, too. Now, it is not in details discussed. 

 

 

a)

 
 

b)

 
 

c)

 
Fig. 7. Cantilever beam with planarly constrained fixed and “free” 

ends – zones of bimoment influence; a) waves by fastening on side and 

lower bar walls;  b), c)  hinge (breaking point) from both sides of  bar 

 

A)

      

B)

 
Fig. 8. A) Accordingly to schemes shown in the Fig 4A, the distance 

of lower part of hinge (breaking point) visible from down for all four 

cases of the bars with identical wall thickness (0.5mm); B) proper 

diagrams explaining positions of hinge at lower wall edges. 

 

As consequence of above conclusions we obtain measured results of 

similar bars load capacity given in Table 1. There, bar with open cross-

sectin obtain load capacity Pn=45.143kg, (with boundary condition at 

free bar end  0' ) higher than bar wit closed cross-section 

Pn=43.883kg (with boundary condition at free bar end 0''  ). It is 

result of better boundary conditions of the first bar. Simultaneously, in 

the Fig 9, are given comparative curves showing character of 

dependences of bar load capacity on thickness  δ  of its walls. It is 

strongly nonlinear. We can draw conclusion, that by thicker bar walls, 

influence of local instability is much smaller. 

 

Table 1. Measured critical loadings (load carrying capacity) for 

cantilevers with walls thickness 0.5mm, with open or closed cross-

sections, with free- or planarly constrained right end 

Scheme 

of the cantilever 

Pn load capacity [kN] 

(hanging mass [kg]) 

by given bar cross-section δ=0.5 mm 

  

 

302.858 

(30.883) 

430.345 

(43.883) 

 

442.702 

(45.143) 

488.793 

(49.843) 

 

 
Fig. 9. Capacity of cantilever beams (see Table 1) 



2.2. Measured torsional internal forces 

It is worthy to explain, that after electro-resistance measurements of 

strains, were calculated normal and shearing stresses, which applied in 

Eqns (1) permits to determinate of measured bimoments B and bending-

torsion moments, given in Table 2 (J.B. Obrębski, Ref 94).  

 

The bimoment and bending-torsion moment have among the others, two 

following definitions: 

 

    dsAdB 


1
 ,       dsnM 

   ,        (1) 

 

expressed by: stream of normal stresses   or shearing stresses  and 

its arm  n. On basis of above formulae, J.B. Obrębski has calculated 

measured experimentally bimoments and bending-torsion moments 

presented in Table 2, Ref 94. 

 

It is worthy to add, that shearing and normal stresses occurring in Eqns 

(1) can be experimentally measured, or calculated by any method, e.g. 

by FEM. This idea was used in Ph.D. dissertation of N.Jankowska, 

Ref.282. 

 

Table 2. Internal forces - bimoments and bending-torsion moments 

calculated analytically and measured, accordingly to Eqns (1) (method 

proposed by J.B.Obrębski) 

Internal 

Force 

Model 21  

with open cross-section 

Model 22  

with closed cross-section 

analytical measured analytical Measured 

B [kNcm2] 831.82 848.475 -4.826 9.65 

Mω [kNcm] -10.1908 -2.175 2.189 3.35 

 

2.3. Observed effects of bimoment 

Bimoment belong to internal forces, unpopular by scientists and 

engineers. For the reason of difficult its explanation, in most of books 

and standards, is simply ignored. So it is important, to show 

experimentally its existence and effects. Such observations were 

undertaken by author. 

 

a)    

b)

 
 

c)

 

d)

  

e)

 
Fig. 10. a,b, d) loading system for bimoment, Visible waves on free 

longitudinal slits of: c) cantilever (visible strong steel cork);  e) of bar 

loaded by pure bimoment at lower end (four equilibred forces). 

 

In this chapter, are presented mainly the photos of the experiments 

performed in years 1988-1992 Refs 76, 79, 81, 82, 187, 195, 197 and 

elaborated partially a little latter. Some observations concerning 

observed phenomena were quoted in the books Refs 30, 35. Other 

materials were not published up to the moment. There, were performed 

two kinds of experiments, concerning cantilever beam and application 

of pure bimoment loading. So, especially in zones, where is acting 

bimoment, there were observed local instabilities of bars walls. Intensive 

values of bimoment, specially appears in thin-walled bars with open 

cross-sections, see Table 2. Therefore, in bars with open cross-section 

and with thinner walls we observe more intensive waves. These easy 

conclusions follow of the effects well visible in photos of the Figs 10c,e, 

12, 13. 

 

2.3.1. Bar loaded by pure bimoment 

In second type of experiments, bar was loaded by pure bimoment, only. 

The experiment, concern of short rectangular bar, showed in the Figs 

10d,e,11-13. Accordingly to scheme given in the Fig 10d, pure 

bimoment was applied, at down. At the top of specimen, in each case 

was applied rigid cork for constraining of longitudinal displacements 

and for stiffening whole model. Besides of it, there were applied three 

different type longitudinal slits: in the middle, in one quarter of wider 

wall and in the bar corner, Figs 12,13. Moreover, there were applied 

three cases of walls thicknesses: 0.5mm, 1.0mm, 1.5mm, see diagrams 

in the Fig 11. 

 

At certain value of bar loading P (Fig 10d) appears waves along slot, 

Figs 10e,12,13. Besides of waving of slots edges, in each case were 

observed certain rotations of the bars top end. In these series of 

experiment, without any doubts, waves and critical loading were 

resulting of the pure bimoment application, only. So, it all confirms the 

thesis, that in the first type of experiments, bimoment is significantly 

responsible for wavy effects on side walls and along slits, too. 

 

There, were measured critical forces – which brings longitudinal waves 

at longitudinal edges of open thin-walled bars. Next, critical bimoment 

B was calculated accordingly to equation (13) similar to Eqn (1a). 

Experimental results are compared in the diagram of the Fig 11, with 

similar ones calculated analytically by means of formulae derived by 

J.B.Obrębski in the book Ref 35.  

 

For thinner bar walls, the convergence is enough good. For thicker bars, 

differences of results are much bigger. Experimental curves show high 

nonlinearity of the phenomenon. Contrary, the observed theoretical 

values of  Bcr depends almost linearly on thickness of bar walls. In 

reality, similar values obtained experimentally are higher and evidently 

nonlinear.  

 

So, we come to important conclusion, that bimoment as force really 

exists and can be observed and calculated. Moreover, in any case it is 

important, that the bimoment has its critical value which can be 

measured and analytically calculated, with enough convergence! 

 

 
Fig. 11. Observation of critical bimoment (with M.E. El. Awadi, 

Egypt, Refs 194, 195, 82 (1991, 1992) for short, rectangular bar,  

with planarly constrained displacements by strong steel cork at top; 

a), b) loading system by pure bimoment at bottom bar end; c) small 

damage of supported corner; d) comparison of measured and 

calculated critical bimoment.  



    
 

  
Fig. 12. The specimens, loaded in strength machine; visible 

three different type waves at free longitudinal edges of 

slit in middle of wider bar wall 

 

   
 

          
Fig. 13. Visible three different type waves at free longitudinal edges 

for bars with longitudinal slit on three positions of the wider wall 

2.3.2. Experimental examples of bimoment influence on instability 

of thin-walled bars 

All these experiments show high importance of torsion and bimoment in 

single bars mechanics, and for frames, too. Similarly, this chapter 

presents examples of visible bimoment influence on instability of thin-

walled bars – local and global. There, own experiments concern of the 

bars loaded by pure bimoment or bended with torsion. Shown 

photographs and drawings presents observed effects. In the light of these 

experiments, the bimoment is evidently a real internal force, very 

dangerous for structures, which should be seriously considered by 

designing of objects composed of thin-walled bars. 

 

2.4. Experiments on torsion thin-walled simple plane frames 

The problem of computer analysis of space frames taking into 

consideration of bimoments, too, was numerically investigated by some 

authors. There, can be mentioned e.g. works by J.Rutecki Ref 303 (book 

1957), J.H.Argyris and D.Radaj (1971), R.Dziewolski (IASS, Kielce 

1973), J.B.Obrębski Refs 71,30 (1985, 1991), K.Grygierek (Ph.D. 

dissertation, Gliwice, 2003), and C.Szymczak et al. Refs 308, 309 

(2003). There, still is serious question about real behaviour of space bar 

frames. 

 

Therefore, N. Jankowska in she’s Ph.D. dissertation Ref 282 (supervised 

by J.B.Obrębski), has investigated 8 models of simple thin-walled 

frames, type L, T and Y, Figs 14, 15, 16. The frames were composed of 

the 2 or 3 thin-walled bars, made of the brazen, connected with one 

centralnode, only. By both ends of each bar, in distance of 2.5 cm were 

glued 25 electro-resistance rosettes, Ref 282. Sensors in rosettes, were 

oriented along, transversely and under angle 45o to bar axis. So, were noted 

by computer strains in these directions and next, calculated proper normal, 

shearing and principal stresses. There was applied very modern in that time 

electronic bridge of the firm VISHAY, system 5000. 

 

All together, were investigated 32 cross-sections, in it most of  them placed 

by central node. 

 

A)

 
Fig. 14. Frame type L and loading system 

 

 
Figure 15. Electro-resistance measurements of  T type thin-walled frame 

with bars having external dimensions 10x20cm. 

 

Next, were drawn proper diagrams, and calculated among the other, 

internal forces, associated with torsion: B – mimoment and  
̂M - bending-



torsion moment, according to formulae (1), by method proposed by 

J.B.Obrębski. Some results are given in Table 3, Ref 282. So, The 

transmition of bimoment through node and its dependence on node 

rigidity was confirmed. 

 

 

B)

 
Figure 16. A) Electro-resistance measurements of  L type thin-walled 

frame, with box bars having external dimensions 10x20cm; at the left  is 

visible torsioning moment applied, only; B) electro-resistance 

measurements of  T type of thin-walled frame  

 

Table 3. Measured bimoments (N. Jankowska Ref 282, Table 4.17) 

I – 

number of 

sheets in 

central 

node 

Frame type Li Frame type Ti Frame Yi 

1 2 3 1 2 3 1 2 

L1 L2 L3 T1 T2 T3 Y1 Y2 

C –active 

CS 

-1364 -1355 -1259 -1495 -1390 -1339 -1413 -1333 

B-passive 

CS 

-455   -285 -261 -241 -322 -285 

E-passive 

CS 

   287 244 222 259 223 

 

It is important, that similar observation concerning of bimoments 

transmission, obtained numerically by super-elements technique, was 

reported by C.Szymczak et al. (see Refs 309, 310). 

 

2.5. Application of commercial program MS Excell to elaboration 

of experimental results 

Lately, author come back to new complex elaboration of accessible own 

and quoted in Ref 282 measurements data. This time it is lead by means of 

commercial program MS Excel. For this purposes, were foreseen for each 

model separate document and for each cross-section individual calculation 

sheet. The shape of cross-section is there declared by coordinates (y,z) and 

all necessary material and model data. Therefore, such program can be 

applied for different types of cross-sections. 

 

 The MS Excell program is generating: all geometrical characteristics of 

cross-section, internal forces, strains, normal and shearing stresses, 

principal strains, angle of non-dilatational strain, principal stresses and its 

inclination. All these information will be presented during LSCE 2009. 

 

Before calculation, the measured data were interpolated for points assumed 

in distance 1 cm each of the other. For points located on longitudinal free 

edges, measured data were extrapolated linearly, by assumption that 

shearing stresses xz  and normal – circuital stresses z  are equal zero, 

Refs 182, 183: 
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
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ac     ,     

2

1 



 ab

   .         (3) 

So, longitudinal strains 
a were interpolated linearny, and remaining 

strains: cirquital  - 
c  and inclined by 45o  -

b  ,were calculated by means 

of Eqns (3).  Example of some obtained results is shown in the Fig 17. 

 

  a)

ODKSZTAŁCENIA - przekrój 2cm
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b)

ODKSZTAŁCENIA - przekrój 55cm
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Fig. 17. Diagrams of measured strains for model No 11 with walls 

thickness app. 1.5 mm, loaded by hanging mass 100 kg;   

in cross-sections: a) 2 cm and b) 55cm from fastening 

black lines – shape of cross-section, 

red lines – longitudinal strains, 

yellow lines – cirquital strains, 

green lines – inclined strains. 

 

 

2.6. Summary for experimental observations 

After above discussion, on the ground of presented data and 

photographs, we can drawn following simple conclusions: 

a. bimoment is identically real internal force as: longitudinal one, a 

shearing forces, and bending and torsion moments, 

b. there can be calculated critical internal forces: longitudinal, 

bending moments (associated with transversal critical loadings) 

and bimoment (in consequence critical torsion moment) Refs 30, 

35, 225, 227, 

c. so, any type of bar loading can bring us to critical state of 

loading, 

d. by designing of bars should be taken into consideration all types 

critical loadings, including combined loading, which can be easily 

calculated and considered (see Refs 30, 35). 

e. In experiments described in chapters 2.1 and 2.3 dependently on 

particular thickness of walls were observed waves at other 

position, Figs 4, 7, 8A, 10c, 12, 13. Explanation of this problem is 

connected with bimoment activity, but now it is not wider 

discussed. 

 

 



3. NEW THEORIES 

Theories applied in all elaborated own programs, were built successively 

as it is given below. Each of them is shortly characterised as follow. 

 

3.1. Theories for single straight bars 

Considered bars can have any type of cross-sections (CSs): full or 

thin-walled (TW) of open or closed type, homogenous or composite (as 

e.g. in the Figs 18-20). Applying each of mentioned types of CSs, 

different will be determination of bar rigidity, including torsion 

properties, but global analysis of structures will be led by equilibrium 

equations and physical relations for particular bar, formally the same. It 

concern of all types of analyses: static, dynamics, stability and 

dynamical stability, all with influences of surrounding media, as in the 

books Refs 30,35. 

 

It is suggested for CS composed of more than one material (composite) 

as e.g. reinforced shown in the Figs 18-20, to calculate so called 

reduced geometrical characteristics of the CSs, as it is given in the 

Table 4. So, there are not problems with determination of such 

characteristics associated with torsion: ̂max , I ̂ , K s (see Refs 30, 35) 

and LSCE books). For example, deflections calculated for a beam with 

the CS of the Fig 20a are 94,9% bigger than for the identical beam, but 

with the CS of the Fig 20e (compare bold numbers in Table 4). 

 

Geometrical characteristics of homogenous straight bar. In author’s 

theories, generally the bars taken into consideration, can have the CSs 

homogenous or composed of some materials. There, material form strips 

or fibers disposed along the bar. The walls thickness around the CS 

circuit can be variable, Obrębski Refs 16, 30, 32 (1989, 1991, 1999). In 

the case of homogenous cross-sections, calculation of its area, center of 

gravity, moments of inertia follows in traditional way. The difference 

appears for composite-, perforated-, with lacings- and for multi-

branched bars. Below are commented the first two cases. 

 

Geometrical characteristics of composite bars. As it follows of the 

derivations of the theory, in the case of the CSs composed of some 

materials, should be assumed for whole CS (for whole structure) general 

Young’s modulus E  – the best as for the strongest material.   

 

It results in introduction of reduced elementary area dAEEdA )/( 1  and 

next reduced geometrical characteristics of cross-section e.g.: area A  , 

moments of inertia I 2 , I 3 , warping (sectorial) moment of inertia I ̂  

etc. 

 

 In consequence, there is calculated e.g. reduced center of gravity – a 

little different of the traditional one. Certain example of calculated of 

geometrical characteristics for five CSs of the Fig 20 are shown in the 

Table 4. The first is homogenous, and next four have different number 

of reinforcing bars. So, the bending rigidity of the reduced moments of 

inertia, are growing. All the CSs are symmetrical, built of concrete and 

steel bars. The torsion rigidity K s  is calculated, too. 

 

It is very interesting, that for compact – full CSs, can be calculated their 

geometrical characteristics, assuming, that whole bar is built of TW 

tubes, located one into the other. Accuracy of calculated this way 

characteristics are enough close to exact theoretical results (Obrębski 

Ref 97). There are not problems with determination of such 

characteristics associated with torsion as: ̂max , I ̂ , K s (Obrębski Ref 

30 (1991) and LSCE books Refs 31, 34-45(1995-2007)).  

 

It is important, that by analysis of the bars with variable rigidity on their 

length, applying numerical solutions by means of Finite Differences, in 

particular CSs can be considered other characteristics. 

Geometrical characteristics of perforated bars or with lacings. In the 

case of perforated bars, with openings located along of the 

longitudinal strips, material separating openings, is replaced by 

hypothetical wall with new thickness and mechanical properties 

(material modulus), but with identical mass and deformations as for 

original part of the bar.  

Further, the analysis is led as in whole theory for composite bar, Refs 

30,32 (Obrębski 1991, 1999). 

 

 
Fig. 18. Different type composite cross-sections 

 

 
Fig.19. a, d) Homogenous and b, d) composite (reinforced timber) 

cross-sections 

 

 
Fig. 20. Cross-sections divided on thin-walled tubes with walls 

thicknesses 1cm Refs 129, 236 (2000, 2002). 

 

Table 4. Geometrical characteristics of the cross-sections of the Fig  20 
Cross-
section 

Of the Fig. 

A  I 2
 I 3

 I ̂
 K s

    ̂max
   ̂corner

 

cm2 cm4 cm4 cm6 kNcm2 cm2 Cm2 

Figure 1a 200 6666 1666 8419 6062276 15.268 15.268 

Figure 1b 218 8024 1898 12290 6190833 14.547 13.296 

Figure 1c 246 10062 1942 20133 6422960 19.749 18.559 

Figure 1d 293 12049 2219 26617 6663297 18.706 17.566 

Figure 1e 331 12991 2494 28177 6935002 17.461 16.379 

 

3.1.1. Uniform theory for thin-walled straight bars – possibilities 

and advantages  

The theory was elaborated firstly about 1980 and published by the 

author in IJ Thin-Walled Structures  Ref 16 (1989) and in the form of 

the book as lecture notes of Warsaw University of Technology Ref 30 

(with second edition in 1999 Ref 32) under title Thin-Walled Elastic 

Straight Bars. Next it was extended in the book Strength of Materials 

(Ref 35), and in numerous conference papers. The theoretical 

derivations of the theory were supported by: many numerical 

calculations of comparative tasks, students homeworks, serious 

experimental investigations and by some problem-oriented own 

programs. The theory is lectured on the Faculty of Civil Engineering of 

Warsaw University of Technology since 1980. 

     

The theory concern of the elastic thin-walled straight bars with any type 

of cross-sections: open, closed with one or more circumferences and 

open-closed. The CSs can be homogenous or composite – built of some 

different materials. There are derived uniform equilibrium equations for 

static, dynamics, stability and dynamical-stability, where are possible to 

be considered interactions with surrounding media as air, water or soil. 

So, range of structures analysis is here extremely wide and accuracy 

much better. The theory is completed by following particular problems: 



- clear and easy algorithms for determination of geometrical 

characteristics of any thin-walled and full CSs, too (treated as set of 

thin-walled tubes located each in the other), 

- simple analysis of stresses for composite bars (one formulae for 

normal stresses and one for shearing stresses), 

- analysis of perforated bars or with lacings, 

-  calculation of critical combined loadings of any type, what brings the 

problem to ultimate critical curves or surfaces (instability of bending, 

torsion or bending-torsion character), 

-  there is possibility to calculate value of critical bimoment (Ref 35), 

too (what was checked experimentally), 

- new proposals for calculation of stresses for bars with any type of CS, 

taking into consideration influence of its instability (see Eqns (24,25), 

-  theory of first and second order (including instability), 

-  theory of higher approximations – taking into consideration influence 

of shearing stresses disposition, on bar deformations, on internal 

forces and stresses, 

-  analysis of space frames by DMEM (see chapter 5.2.2), taking into 

consideration of bimoment existence (see Table 5 and chapter 3.3), 

-   it was derived exact stiffness matrix of FEM for TW bar Ref 30, 

  - dynamical behaviour of bars under moving loading applying of 3D-

Time Space Method combined with Finite Differences approach 

(applied to bridges, tall buildings, landing aircraft on airstrips, 

highways etc). 

 

The theory was extended on the bars with full CSs (see above). So, 

independently on kind of CSs, the derived very general set of four 

differential equilibrium equations, always is the same. There are 

changed the values of calculated geometrical characteristics of bar CS 

and its mass, only. 

 

The theory was tested by experiments (are excellent photos and unique 

results) and by FEM calculations, too. In each case were obtained 

sufficient analogies (any kind of analysis can not to give at all exact 

results).  

 

Physical relations for straight bar. The internal forces, moment of 

free torsion Ms, bimoment  B, and bending-torsion moment  ̂M  

depends on the first, second and third order derivatives of the function 

  describing of the bar longitudinal axial torsion angle (Eqns (4)): 

 

  ' ss KM ,     '' 
IEB ,    ''' 

 IEM ,                (4) 

  ̂1 MMM s    .                        (5) 

 

where: sK and ̂IE are proper bar rigidity, (Obrębski Ref 30, 1991). 

So, the sum of free torsion moment and bending-torsion moment gives 

torsion moment - Eqn (5).  

 

Besides above definitions of internal forces dependent on bar torsion 

angle  , in the theory were derived next expressions, (Obrębski Refs 

30, 35 (1991, 1999)), given in Table 5, describing all internal forces for 

bar with number    ( N1 ) and with length  l . There, are 

introduced bar rigidities defined as follow: 
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More information can be found in the book of J.B.Obrębski Ref 30 

(1991, 1999). It should be completed by information, that in theory for 

space bar systems, were considered “finite dimensions of nodes” as in 

the Fig 21, too. 

 

In formulae given un Table 5, coefficients iC  and  'iC  are calculated 

from expressions dependent on bar boundary conditions at both bar 

ends and on kind of analysis: static, dynamics etc. Ref 11. Symbol 

'1  , and Boole’s operator E  indicate the other end of the bar and 

its orientation in space (see Eqns 27, 28).  

 

Table 5: Physical relations for internal forces for straight bar 

 
Internal forces in cross-sections by nodes 

Longitudinal and shearing forces 
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On the basis of formulae describing internal forces, given in Table 5, in 

natural way was composed stiffness matrix of FEM for straight 

prismatic bar with practically any type of CS, Ref 30. The one only 

stiffness matrix is valid for different bars with any boundary conditions 

for all three functions describing deformed axis of the bar and for any 

kind of analysis. There, for particular bar and any applied range of 

analysis, the coefficients iC  and  'iC should be calculated in the other 

way, only, Ref 11. 

 

The formulae in Table 5 were used by DMEM and for FEM (above) - 

for stiffness matrix of single bar, both elaborated by Obrębski, Refs 11, 

30, (1991). Moreover, identical formulae can be applied for any bar 

with full or TW (open, closed, open-closed) CSs, Obrębski Ref 30 and 

LSCE 1995-2006. 

 

In formulae d) and g) in the Table 5, we recognize other expression for 

the same torsion forces as in Eqns (1, 4, 5). It is now, yet once well 

visible, that torsion moment d) and bimoment g) depends on the 

same displacements, and therefore, they appear always together! 

This time, there are taken into account, bar boundary conditions. So, in 

the case of elastic behaviour of nodes, should be modified the 

coefficients 
iC  or 'iC  to formulae of the Table 5. 

 

Equations of motion. In discussed theory, were derived very general 

equations of motion taking into consideration theory of second order 

and interaction of the bar with surrounding media, Obrębski Refs 16, 

30, 32 (1989, 1991, 1999). 

 

The equilibrium equations for static or equations of motion for the 

theory of first order are the special - simplified cases of general 

equations. Only omitting proper terms, we create expected type of 

analysis, sometime truly unusual. Especially, it can be very advanced 

tasks, when we take into consideration interactions with surrounding 

media (three parametrical) – acting simultaneously, but independently 

in three directions.  

 

Theory of second order can use whole – large set of equation or 

simplified its version, dependently on character of the considered task. 

Accordingly to type of loading, it can be calculated displacements for 

static or for forced vibrations in dynamics. It can permit to determinate 

critical configuration of loading (combined), too.  

 

More on basic relations of theory for single straight bar. Above, 

were given essential definitions of theory for tw bars. Now, we observe, 

that internal forces, moment of free torsion ms, bimoment  b, and 

bending-torsion moment  ̂M  are described by: first, second and third 

order derivatives of the function   - of the bar longitudinal axial 

torsion angle (Eqns (4)), (Ref 30, J.B.Obrębski 1991). 



Sum of free torsion moment and bending-torsion moment gives torsion 

moment Eqn (5). 

 

Similarly, formulae on longitudinal displacements, strains and stresses, 

are together dependent on   as in formulae: 

 

    


''' 332211  vvvu  ,   

    


'''''''' 3322111  vvvu   ,                            (7) 

     


''''''' 3322111  vvvEE   , 

 

where new symbols means: vi  and   – means displacements and 

longitudinal rotation of bar axis (around shearing centre),  2 , 3 - 

coordinates. All above quantities depend on bar torsion   . 

 

 
Fig. 21. Nodes with real – „finie dimensions” (see Ref 11 and Fig 55) 

 

Analysis of simple structures built of thin-walled bars. Determina-

tion of internal forces for set of thin-walled bars or even critical 

combined loading belong to rather difficult tasks. For single straight 

bars it is possible to obtain exact solutions. Much difficult is matter of 

analysis for frames and especially for space bar structures. 

 

The analytical solutions concern rather very simple tasks with simple 

system of loading and easy boundary conditions. There are some 

mathematical problems with solution of some sets of differential 

equations. Moreover, for the long bars, especially with closed CSs are 

problems with hyperbolic functions sinh x and cosh x (x>224). 

Actually, in comparison with numerical analyses based on FEM, FDM 

and DMEM, such solutions are rather not competitive. As profitable 

side of analytical method is existence of some closed formulae for 

determination of internal forces in the bar. Contrary, as weak side of 

such solutions, is to simple information about stresses and 

displacements distribution. 

 

A) B)

  

C) D)

   
Fig. 22.  Types of cross-sections foreseen in WDKM computer system 

for automatic dimensioning of bars (see Fig 70, too), Ref 11. 

  

3.1.2. Theory for solid straight bars 

In the book Ref  35 (1997) the uniform theory for straight bars with any 

cross-section was given. It is worthy to point CSs possible to be used in 

WDKM program system, Fig 22, too. Additionally it was investigated, 

extended and verified in many next papers. The theory has identical as 

for thin-walled bars (Ref 30, 32): 

- equations of motion (equilibrium equations), 

- formulae for displacements of the bar, 

- formulae for stresses calculation (if no torsion – traditional), 

- all solutions for static, dynamics, stability and dynamical stability. 

The only differences concern of calculation: 

- geometrical characteristics of cross-sections,  

- rigidities of the bar including interactions with surrounding media. 

 

3.1.3. Application of Finite Differences to analysis of complicated 

tasks  

It was truth discovery, that this method can be still young, very effective 

and still competitive in certain applications, to FEM. It permit to 

analyze very complicated and real tasks with arbitrary boundary 

conditions, with variable rigidity on the bar length and bars under action 

of much more complicated external loadings.  

 

Thanks of proposed application of Finite Differences Method for 

solving equilibrium or motion equations or their sets, are open 

possibilities to consider: very complicated systems of bars (Figs 22, 70), 

boundary conditions, combined loadings, very long bars, any type of 

interaction of bar with surrounding media etc. There is no problem with 

well known limitation of argument for hyperbolic functions sinh(x) and 

cosh(x). This way, the extremely advanced theory can be in whole range 

applied for plenty of complicated tasks, such, which were not possible 

to be solved previously. 

 

So. the method can be applied to determination of the internal forces, 

displacements, critical combined loadings, etc. Moreover, the FDM uses 

the stiffness matrix of the structure in many cases much smaller than by 

Finite Element Method. This way, solutions can be obtained even by 

MS Excel for some enouhgly big tasks, where besides of essential 

calculations, proper diagrams can be drawn. 

 

Applying FDM, any task, which has theoretical solution in the form of 

differential equations, can be transformed to Finite Differences 

Operators (FDO), ever in the polynomial shape: 
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where, the symbols A and C  means proper coefficients, e.g. Refs 155, 

210, 223, 232, 249.  

 

In result we come to solution of Eqn (9): 

 

  Kx=Q ,                        (9) 

 

where unknown displacements  x  are determined, by given set of nodal 

forces Q   and   K – stiffness matrix of whole structure. 

 

We can risk of thesis, that this method can give the same and even better 

results than theoretical ones and even as Finite Elements Method, too. 

There is possible to analyse the structures using: 

   - the highest quality differential equations transformed to FDO, 

   - easy in application program MRS (author J.B.Obrębski), 

      there for one „node” can be used sets of equilibrium equations;  

     for example for straight bars four equations. 

 

This way, by this method we can start from differential exact physical 

relations and to have the same number of unknown displacements on 

“node” as when applying FEM. 

 

3.2. Theory for plane hexagonal structures  

Some interesting tasks were solved in author’s Ph.D. dissertation, Refs 

1-5 (1971, 1972). There, were derived equilibrium equations and proper 

elements of geometry for following structures:   

 - circular plane hexagonal grid, Figs 26-31, Refs 1, 2, 4, 

 - double-layer plane space bar truss type I (Fig 32, Refs 1, 2, 4), 

 - double-layer plane space bar truss type II (Fig 33, Refs 3, 4), 

 - cylindrical double-layer space bar truss type II (Fig 34, Refs 3, 4), 

 



 
Fig. 23. Definition of cylindrical net of points, Ref 4. 

 

There, were derived equilibrium equations of repeatable nodes and 

proper elements of geometry, e.g. Figs 23-25. Moreother, there was 

defined special mathematical calculus for solving analytically sets of 

finite differences equations with functional  ia  - exponents of Boolea’s 

operators (compare Eqns 27, 28)).  

 

In result, for plane hexagonal grids, were found closed expressions 

defining internal forces and deflections, shown in the Figs 26-31. 

 

Similarly, for double layer trusses, solution and analysis of numerical 

efficiency of some approaches, were done in Refs 4, 5, for some 

structures shown in the Figs 32-34. 

 

 
Fig. 24. Example of double layer structure inscribed to cylindrical net. 

 

 
Fig. 25. Example of double layer structure inscribed to spherical net. 

 

 
Fig. 26. Hexagonal band plate grid - considered schemes and loadings. 

 

 

Fig. 27.Deflections of hexagonal band grid should be multiplied by 
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Pl
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Fig. 28. Bending moments of hexagonal band grid should be multiplied 

by
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Fig. 29. Circular hexagonal plane grid in inclined net of points. 

 

 

 
Fig. 30. Deflections for circular grid should be multiplied by
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Fig. 31. Bending moments for circular grid. 

 

 
Fig. 32. Double layer hexagonal truss type I; continuous lines means 

bars in layers, dash & doted lines means bracings. Underlined numbers 

are refered to lower nodes. 

 

 
Fig. 33. Double layer hexagonal truss type II; continuous lines means 

bars in upper layer, dashed – lower layer, dash & doted lines means 

bracings. 

 

3.3. Theory for any space bar structures  

On analysis of space frames.  Besides of discussion of single bars and 

elementary frames mechanics, highly important and extremely difficult, 

is problems connected with analysis of large space bar frames. 

Therefore, next theories oriented on analysis of such structures should 

be mentioned.  

 

There, we can recognised certain tendencies to consider equilibrium of 

bimoments acting on nodes as sum of: algebraic, scalars, or vector 

character; with different interpretation. 

 

They were elaborated by: J.Rutecki, certain general proposal, only, Ref 

303 (1957); FEM application by J.H.Argyris and D.Radaj 1971; 

R.Dziewolski -for large roofs space bar structures (IASS, Kielce, 

Poland1973); J.B.Obrębski -for any large, complicated space bar 

systems, including frames Refs 71, 30 (1985, 91); F.Romanów 1988; 

K.Magnucki and W.Szyc, 1997; C.Szymczak et al. (application of FEM 

combined with super-elements) Refs 308, 309 (2003), K.Grygierek 

2003 (Ph.D. thesis - FEM with seven degrees of freedom in node), etc. 

 

To the approaches, in which bimoment was treated as vector, often in 

different ways, belong elaborated by: J.Rutecki, J.H.Argyris and 

D.Radaj, R.Dziewolski, J.B.Obrębski, C.Szymczak. 

 

For dynamics of bridges under moving loadings, is recommended 3D-

Time Space Method by Finite Differences Method, J.B.Obrębski & 

R.Szmit Ref 223 (2000), J.B.Obrębski e.g. Refs 232, 237, 238, 240, 241 

(2002-2004). Its application is extremely efficient, but not to the end 

exact (dependent mainly on applied space division). The methods 

belong to displacement method, too. 

 

The author’s scientific investigations were led from 1969 till now, step 

by step in sequence, from space bar structures Refs 1-16, through thin-

walled bars and bars with any cross-section Ref 30, over strength of any 

straight bars with any cross-section Ref 35, to stability and dynamical 

stability of various types bars, plates etc. – specially with moving 

loading by any manner (history) of its disposition in 3D space and in 

time.  

 

This theory is elaborated for large space bar structures. It can be applied 

to discussed in chapter 3.2 plane hexagonal grids, or to any complicated 

space bar systems, but applying computers, e.g. Refs 11, 28, 29, Figs 

45-52. 

 

The paper, for reason of it’s to big volume, is limited to main topics 

mentioned above. 

 

 
Fig. 34. Double layer hexagonal truss type II; continuous lines means 

bars in layers, dashed – lines means bracings. 

 

Vector interpretation of internal forces. It is worthy to turn the 

attention on proposal for any large, complicated space bar systems, 

including frames, J.B.Obrębski Refs 71, 30, 32 (1985, 1991). The 

approach is based on vector interpretation of all internal – cross-

sectional forces including bimoment and bending-torsion moment, 

follows in natural way from theory of TW bars, where B and Mω are 

collinear with longitudinal bar axis of shearing centres of CSs.  There, 

equilibrium equations of node are derived on basis of vectorial 

equilibrium of forces. It brings task to approach based on FEM or 

DMEM (Difference-Matrix Equation Method – elaborated by 

Obrębski), both destined for structures composed of many bars with any 

type CSs and with any boundary conditions for each of four 

displacement functions. It concern of bars under any type of combined 

loading, in range of static, dynamics, theory of first and second order, 

too. The method seems to be the most exact for space frames, where 

bimoments as internal forces are calculated, too (Refs 30, 32). 

 

More on vectorial equations. It is now evident, that all formulae of 

theory for bar structures can be considered as certain vectorial 

expressions. For example, previous formulae (4, 5, 7, 15) can be written 

in vectorial interpretation, e.g.: 

 



''' 1 bmKIE s

IV


 
 , 

'


ss KM ;     '' 



IEB ;    '''



 IEM ;     

̂1 MMM s


  

 , 

  dsAdB 


1
 ,         dsnM


 

  , 




''' 332211  vvvu  ,          




'''''''' 3322111  vvvu   , 

 


''''''' 3322111  vvvEE  . 

 

This matter as evident, therefore will be here not continued. 

 

Analysis of space frames. As it is well known, the problem is 

extremely difficult and probably exact solutions by application of bars 

model to 3D type tasks, is impossible. However presented below 

approach, based on idea of vector sum of all forces acting on node, 

seems to be actually the best. 

 

Some vectorial equations. Obrębski in Refs 71, 28, 29, 30, 178 (1985-

2007) has shown derivations of theory, which indicates possibility to 

interpret all internal cross-sectional forces as vectors, including 

bimoment and bending-torsion moment, too. In consequence it was 

given proposal to consider equilibrium of forces acting on node as 

vector sums of proper forces, moments and bimoments. This assumption 

brings us to three following vectorial equations (Rutecki, Ref 303 

(1957), Obrębski Ref 71 (1985)): 
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Each of above internal force can be expressed by basis vectors it


 

collinear with bar longitudinal axis and with both principal axes of its 

CS, together with the values of internal forces calculated by means of 

formulae of the Table 5, Refs 11, 28, 29, 30: 
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After projection of above three vectorial equations on three directions 

(r=1,2,3) of local (nodal) reference coordinates, we obtain nine 

equilibrium equations of node: 
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Using here expressions of Table 5 (physical bar relations 

displacement→force), and after some derivations, we come to DMEM. 

There, are nine equilibrium equations with nine degrees of freedom. For 

the reason of strong dependences between bimoment (Table 5g) and 

torsion moment (Table 5d), equations (9)2 and (9)3 should be used 

always together. So, (9)3 can be regarded as additional conditions to 

equilibrium of moments (19)2. In practical calculations the equations 

(10)2 are dominating. 

 

In all author’s theories and programs, were used equilibrium equations 

derived from condition, that vector sum of all forces acting on node is 

equal zero (see Eqns (7-9). In result in computer programs, as central 

point of algorithm is foreseen solution of linear algebraic set of 

equations, written in the form of well known Eqn (9). 

 

Extension of this approach, step by step gives works Refs 11, 184-186, 

190 etc. There, bars of the space structures can be pin joined (truss) or 

fully rigid (frame) or with practically any boundary conditions at the 

nodes. Analysis can concern static, dynamics and in certain range 

stability of structural systems. On the basis of this theory were gradually 

elaborated programs KM, KMTD, KMTG, WDKM (Ref 11) and SPES 

(Refs 217, 233, 279). There, was used original method of stiffness matrix 

composition called as Difference-Matrix Equation Method (DMEM). The 

square matrix K  for Eqn (9) is built always by means of matrix type 

equation describing equilibrium of whole node of considered structure: 
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Symbols  oW
 and  

W  are matrices with dimensions 2x2, 3x3 or 6x6, 

dependently on task type. When scheme of structure is more 

complicated - of mixed type, dimensions of these matrices can be 2x3, 

3x6, 6x3 etc. (Ref 28, 29). Here, in nodes are assumed identical 

numbers of degrees of freedom as in FEM. Often physical relations for 

particular bars are here more precise and for all kinds and ranges of 

analyses are written in the same manner Refs 136, 146. It permits to 

obtain almost exact numerical solutions. 

 

3.4. Torsion in analysis of bar structures 

The problem concerning of analysis of space bar structures is extremely 

interesting, difficult and of the highest scientific importance. The 

chapter presents results of the theoretical, numerical and experimental 

investigations, of previous authors and own, too. It is oriented rather on 

foundations of theory, on numerical calculations and efficiency of 

applied methods. It gives certain historical review of theories in domain 

and tries to show state-of-the-art of research works in the field of 

computer analysis of space frames composed of thin-walled or with full 

cross-sections straight composite bars. It recommends vectorial 

interpretation of bimoments for analysis of space bar structures.  

 

Below is presented certain resume of many observation following of 

experiences concerning specially a torsion effects in analysis of bar 

structures. There are considered five essential topics:  

- properties (including torsion rigidity) of bars used in structures;  

- experimental observation of torsion influence on structures behaviour; 

- analytical determination of critical bars loading;  

- torsion in analysis of space bar structures;  

- and at last – part of torsion by stresses calculation.  

 

It is shown, that on all above designing steps, applying nowadays 

approaches can be generated remarkable or even terrible errors. 

Contrary, by application of proposed approaches, they can be essentially 

reduced. For above reasons, there is recommended application of some 

theories developed by author, concerning of:  

- bars torsion, including homogenous-, composite and thin-walled 

(TW) with open or with closed cross-sections (CS);  

- vectorial approach to composition of equilibrium equation of nodes 

for space bar structures;  

- application of uniform criterion for bar instability even for combined 

bars loading; 

- and at last, common approach to stresses calculation for any type bars 

– even with composite CSs. 

 

More essential formulae. The main subject of this paper is to show 

some observations concerning effects generated by internal force called 

as bimoment B. It is defined accordingly to theory of TW bars in three 

ways Refs  30, 35: by means of Eqns (1)1 (4)2 and as below: 
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where:  


 - generalized sectorial coordinate of force  iP  position. 

Simultaneously, bending-torsion moment as a main part of bar torsion 

moment is defined by Eqn (4)3 . 

 

So, from definitions Eqns (4) connected by  , follow next 

observations: 

- when torsion exist, in bar are observed torsion moment and 

bimoment, together, 

- when is applied bimoment, should be observed bar torsion and as 

internal force can occur torsion moment (when torsion is 

constrained), 

- when torsion moment is applied, should be observed bar torsion and as 

internal force can occur bimoment (when longitudinal displacements 

are constrained). 



Torsion in analysis of space bar frames –review and discussion. It is 

worthy to show certain historical review of theories in this domain and 

to give short state-of-the-art of research works in the field. It concern of 

computer analysis of space bar frames composed of TW or with full 

CSs straight composite bars. It recommends vectorial interpretation of 

bimoments.  

 

The torsion of single bars and space frames are discussed. There, can be 

mentioned first theoretical solutions of de Saint-Venant for free torsion 

of prismatic bar, Prandtl’s membrane analogy or solutions by 

S.P.Timoshenko for bars with rectangular or triangular CS.  

 

Next, it should be mentioned theory for thin-walled (TW) homogenous 

straight bars by A.A.Umansky 1939;  with open CS by V.Z.Vlasov Ref 

310 (1940), K. Roik, Carl and J. Lindner 1972, W. Gutkowski 1973, 

C.F.Kollbrunner and N. Hajdin 1975, T. Lewiński 2005 etc. 

 

The Vlasov’s theory Ref 310 was extended by J.B.Obrębski Refs 30, 35 

(1991, 1997) on composite bars with any CS. It provides own original 

theory for bars with TW or full CSs, homogenous or composite, 

presented in two  books  and  lectured  on  Warsaw  University  of 

Technology. It is discussed below mainly. It can concern of any straight 

bars with any CSs: polygonal tubes, box girders with one or a few 

circuits, rolled and coldly formed bars, etc. (e.g. Figs 22, 70). 

 

Own proposal makes possible to apply theory for any bar structures 

made of each kind of material as wood, steel, aluminium, glass, 

different composites, reinforced concrete etc.  

 

Next, in literature it can be found different approaches to analysis of bar 

frames. In most cases it concern of simple plane frames. The main topic 

of the next chapters’ concern analysis of space frames taking torsion 

into consideration. 

 

Torsional forces for single straight bar. With torsion are associated 

such internal forces as bimoment and bending-torsion moment, 

responsible for: warping of the particular CSs; for global warping of the 

whole bar by bending or by instability and at last on warping stresses – 

which can obtain very significant values. Torsion has strong influence 

on values of critical loadings, by combined loading, too. By combined 

loading of the bar appear all internal forces: bending moments, 

longitudinal and shearing ones and bimoments. 

 

Our discussions should be started from differential equilibrium equation 

(15), one of the four (given here in the simplest form, Ref 30), 

responsible for bar torsion. There, function   describing of 

longitudinal axial torsion angle is dependent on external loading – 

continuous torsioning moment 1m  on external bimoment b  and on bar 

boundary conditions: 
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.                  (15) 

 

In theory of the second order it is well visible, that set of four 

equilibrium equations of single bar (extended version of Eqn (15) 

dependents on longitudinal forces on transversal loadings and on 

bending moments, too (Ref 30, J.B.Obrębski, 1991). 

 

Numerical example of torsion for straight bar. The example concern 

of straight TW bar with the length l=400cm and any CS. It is made of 

steel with properties of material E=205GPa, (E1=225,27 GPa), 

G=80GPa, 3,0 . At both ends it has torsion freely constrained 

( 0''  ), Fig 35a. The task was solved analytically and 

numerically – applying DMEM (see chapter 5.2.2 and Ref 30). 

 

By analytical solution it were used eight boundary conditions ( 42 ) 

for two bar sections AC and CB. On each of section were used other 

torsion function: )(  and )( . The used boundary conditions are 

shown in Table 6, (a=b=0.5l). So, at central node, Fig 35b, condition of 

identical warping normal stresses (Table 6, position 3) bring us to 

equality of bimoments (Mutermilch & Kociołek  1964, and Ref 30): 

 

)()( aBaB   ,                    (16) 

 

or to equality of second order derivatives for torsion angles 

)('')('' aa        - see Table 6. 

 

a) 

   

b)

 
c)

 
 

Fig. 35. a)Bar torsioned by concentrated moment; b) central node;  

c) calculated internal forces. 

 

After calculations, we obtain results as in the Figure 35c. There is well 

visible equilibrium of bimoment on whole length of the bar. 

 

Table 6. Boundary conditions 

 Section 

AC 

0  

Node C 

la 5.0  
Section CB 

l  

1 0)0(   )()( aa   0)(  l  

2 0)0('' 

 

),(),( 11 sausau     or   )(')(' aa   0)(''  l  

3  ),(),( ˆ1ˆ1 sasa      or   )('')('' aa    

4   sMsMM 11 )(    or  

 aIEaIEM ''')(''' ˆˆ  
 

 

 

Example of plane frame loaded by single moment. The frame 

consists of two steel bars of box type with CS having dimensions 

20x10cm and walls thickness 0.5cm, Ref 30. Properties of material are: 

E=205GPa, (E1=225,27GPa), G=80GPa, 3,0 . At both ends - A and 

C, it has torsion ( 0' ) and all displacements fully constrained, 

Fig 36a. The length of both bars is 100cm. By such conditions, were 

searched displacements of node B, determined analytically, too. There 

bar BC is almost bended, only; and bar BA mainly torsioned. Obtained 

results are visible in the Fig 36b. The same results are visible in Table 7. 

 

 

a)

 

  

 

b)

 
Fig. 36. Plane frame torsioned by concentrated moment, Ref 30. 

 



Table 7. Internal forces in frame of the Figure 36, Ref 30. 

Force 
Solution by DMEM Traditional solution 

BC BA BC BA 

T3 -0.006208M 0.006208M -0.006181M 0.006181M 

M1 -0.1409M 0.32189733M -0.1422M 0.3180M 

M2 0.68686692M -0.1409M 0.6819M -0.1422M 

B1 0.0000000213M -0.8552M --- --- 

 

So, checking equilibrium of node obtained by DMEM we see:  

a) shearing forces T3 have ideal equilibrium;  

b) in direction BC bending moments are in equilibrium with torsion  

    moment: 

0.1409M -0.1409M= 0; 

 

c) in direction BA bending moments and torsion moments have  

    almost good equilibrium:  

1M-0.32189733M-0.68686692M= -0.00876425M ,  

 

d) bimoments are not here in equilibrium: 

0.8552M 0     and    0.0000000213M  0. 

 

This way we obtain result, that bimoments alone, are not in equilibrium 

in node B. This confirm thesis of the paper Ref 310, that it is no 

equilibrium of bimoments in node (page 399, row 4 from down). 

 

But, if we look on physical sense of the task, we should agree, that in 

bar BA we have strong torsion generated by external moment and there 

should appear strong bimoment. Similarly in the bar BC we shell not 

expect of torsion. In fact, the torsion is much smaller and there 

bimoment almost does not exists. 

 

In this example, we shell remember, that: 

-  this task have conditions proper rather for theory of second order, 

where node by analysis show certain deflection, 

-  there, was used particular bar model with planarly (fully) 

constrained both ends ( 0'  - rigid node). By numerical analysis, 

it is difficult by such approach to introduce for box type thin-walled 

bar model and node, elastically constrained displacements (here in 

node B, compare Refs 308, 309). Solution of this task can be done by 

proper definition of coefficients iC  or 'iC  to formulae of the Table 5. 

This matter is worthy for separate paper. 

 However, we shell remember, that in task of the Fig 35, the same 

procedure gives full equilibrium of central node.  

 It should be remembered, that mechanical behaviour of structures, 

especially thin-walled, strongly depends on construction of nodes 

(boundary conditions), Ref 9. 

 

 

Numerical analysis by FEM 

At the end, it is necessary to comment accuracy of space bar frames 

analyses, by means of commercial computer systems. Generally, we can 

conclude, that they are to simply. Normally, in literature are reported the 

finite elements with six displacements per node, with only one following 

term in stiffness matrix, only, which describe bar torsion: 
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Contrary, in the book Ref 30 was derived exact finite element for thin-

walled bar on the ground of bar physical relations presented in the Table 

5. There, torsion moment and bimoment depend on two coefficients 

related to bar torsion angle and its derivative. This approach answer at 

all to vector character of the task, as in example of the Fig 36. 

 

Part of torsion by stresses calculation. In the book, Ref 30, are 

presented following formulae for calculation of shearing and normal 

stresses for composite bars: 
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Moreover, it is proposed to be applied additionally Huber-Mises-

Hencky hypothesis, similarly as in previous Polish standards for steel 

structures: 
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Summary for torsion phenomena. The paper gives only short 

comments to principal theories – more frequently applied, to ideas, its 

advantages, problems and week sides, too. But it is clear, that even in so 

wide text and not long presentation, some topics can be reported, only.  

 

The paper recommends taking torsion into consideration on all stages of 

designing process. Especially important is approach based on vectorial 

equilibrium of all forces acting on space frames nodes, including 

bimoment, too. It seems to be nowadays the most exact form of its 

analysis, when we use one finite element or physical relations for whole 

bar as its model (one bar – one finite element or one set of physical 

relations).  

 

 

There, we can recognize following advantages: 

- it is possible to be applied by any kind of analysis (static, dynamics, 

theory of second order, etc., 

- there, are possible declarations of the bars different boundary 

conditions, for four displacement functions: ,,, 321 uuu , 

J.B.Obrębski, Refs 30, 32 (1991, 99), 

-  as result of numerical analysis we obtain as internal forces 

bimoments, too (responsible by torsion for significant or sometimes 

dominating warping stresses), 

- the method (by DMEM or by FEM) enables numerical analysis of 

space frames or continuous beams, 

- for continuous beams (e.g. bridges) obtained numerically bimoments 

are at all exact!; for space frames results can have certain accuracy 

following of problems with definition of nodes deformation, 
- by numerical analysis it is the most difficult problem to take into 

consideration real, elastic behaviour of nodes (its deformability), 

but it is possible to be easy considered improving coefficients iC  or 
'iC  (Table 5). This will be discussed in nearest future. 

 

3.5. Stability of structures 

Instability of the TW or any type of the bar can be observed by any kind 

of loading: longitudinal compressing or even tensioning forces, by 

bending, by torsion moment and by bimoment, too (see Figs 10-13). 

There, is proposed uniform criterion for instability of any kind of 

structures.  

 
3.5.1. Short review of old well known analytical methods 

If we carefully observe classical, well known solutions presented from 

years in all academic books for Strength of Materials and for Structural 

Mechanics, we can come to following conclusion. In such all tasks: 

- bending type of Euler’s critical force e.g. Refs 30, 129, 300, 

- instability of bending-torsion or torsion type, only – V.Z. Vlasov 

Ref 310, 

- problem of frequency of free vibrations - W.Nowacki Ref 300, 301, 

- task of critical loadings of simple frames - W.Nowacki Ref 301, 

J.B.Obrębski Fig 41C, 

- dynamical stability of simple bar structures -  J.B.Obrębski Fig 12 

Ref 30, 

as central point of calculations, was used conditions - comparing to zero 

main determinant of stiffness matrix or similar one, called as stability 

matrix of whole structure. It confirm some new, own analytical solutions 

which were executed applying computer methods, too. 

 



3.5.2 Uniform criterion for instability of structures 

The present chapter gives certain summary of three previous lectures 

presented on Structures Instability Symposia in Ref 105 (1997), Ref 129 

(2000) and Ref 170 (2006) in Zakopane. As efficient criterion of 

structures instability is considered comparison to zero of main 

determinant of whole structure - its stiffness matrix , Eqn (21). 

Simultaneously, the same criterion is fulfilled when structure is 

geometrically changeable. In mentioned papers all examples where 

concerning of tasks with loading acting on given positions. Next, were 

shown efficient applications of this criterion to moving loadings, too 

Refs 238, 241,256.  

 

Mentioned criterion has very simple form: 

 

  det(K)=0  ,                           (21) 

 

where, K is simply a main determinant of a set of equations describing 

equilibrium or simply in other words - stiffness matrix of the whole 

structure. In some approaches for particular tasks the matrix K can be 

built in some other ways.  For example it can be built analytically (e.g. 

Refs 298, 300, 301, 310, 30, 45) as a stiffness matrix of FEM or 

composed by finite differences (e.g. Refs 235, 236, 136). On the basis 

of the above thesis, the following two conclusions were drawn: 

 

1) The structure which in an unloaded state has its scheme geometrically 

unchangeable, where det(K)≠0, can under a certain combination of 

loading P with frequencies of free vibrations  ω  and/or given 

support displacements, reach a state when  

 

           det[K(P,ω)]=0,                    (22) 

 

       which implies the state of the instability of the structure and the 

possibility of obtaining a mechanism of motion, similar to 

geometrically changeable behaviour.  

 

2) In each case when the main determinant of the stiffness matrix 

det(K)=0, it means that the structure has the possibility of reaching 

the mechanism of motion. For an unloaded structure it means 

geometrical changeability of its scheme and for a loaded, stable 

structure – a state of critical loading. The Eqn (22) is a particular 

case of criterion (21). 

 

The conclusions described above are valid for the problems of: 

- any kind of analysis: static, dynamics, stability and dynamical 

stability, 

- any type of loading: static or dynamical, with any kind of 

structure interaction with the external media, 

- any type of analysis: - analytical solutions of equilibrium 

equations, - analytical solutions of finite differences equilibrium 

equations, - in numerical displacements methods: of FEM (Finite 

Elements-), FDM (Finite Differences-), DMEM (Difference 

Matrix Equations-) or 3D-TSM (3 Dimensional and Time Space 

Method). 

 

Now, we can revise well known solutions in the light of conditions - 

Eqns (21, 22) and then present own tests. It can be enumerated the 

simplest tasks, starting from Euler’s, through bending-, bending-torsion 

and torsion, only, types of instability, from single straight bars to critical 

loadings of large space bar structures. In the same way various types of 

tasks for dynamical instability of bridges under moving loading (cars, 

aircrafts) were considered. Now we can say, that such solutions were 

obtained using the well known 3D-TS method. Examples of numerical 

results for some of the author’s own tests are given below. 

 

General remarks to application of uniform criterion for instability 

of structures. It can be shown some examples of application, of the 

general, uniform criterion of structures instability – Eqn (21, 22). In all 

calculated examples, applying FEM, FDM, DMEM and 3D-TSM, this 

condition was giving enough exact result. It seems that this condition is 

not only necessary, but sufficient, too. There is possible to calculate: 

first or higher values of critical forces or critical sets of forces; modes of 

instability for investigated structures – its shape in all considered time 

moments; associated with deformations internal forces, bending-, 

bending-torsion or only torsion type instability, etc. 

 

The method can be applied to wide class of tasks concerning static, 

dynamics, stability, dynamical stability concerning various structures, 

including composite ones. 

 

3.5.3. Determination of critical force using Finite Differences 

There, various approaches to numerical application of FDM are 

possible, but the equilibrium equation of the whole structure always has 

the shape  QKx    , where: K - stiffness matrix of the whole structure, 

  x - vector of node displacements,  Q -vector of external loadings. It is 

always a set of linear algebraic equations. Its solution belongs to 

elementary numerical tasks. By the process of unknowns x 

determination, using Gaussian eliminations, the value of   D=det(K)   

can be additionally (by the way) calculated.  

 

By this description determination of critical forces follows condition 

(21). There we look for the value of the determinant of stiffness matrix 

D=det(K)=0. In general, it depends on the values of some chosen 

variable parameters. So, critical combined loading can be different by 

certain combinations of some parameters and shall fulfill the condition 

as below: 

 

   det[K(P,ω,v,a,M,m,d,t)]=0   ,          (23) 

 

where:  P – system of one or more forces, ω – frequency of free 

vibrations, v – loading velocities, a –acceleration of loadings, M –

moving masses, m –mass of structure, d – dumping conditions, t –time 

etc. The conditions (21), (22) are particular cases of Eqn (23). It was 

efficiently tested, that the stiffness matrix can be composed on the basis 

of more than one differential equation (finite differences operators). 

 

3.5.4. Instability of bars under combined loading 

Especially important is problem concerning of bars under action 

external combined loadings, which are loaded by all kinds of forces: 

longitudinal, transversal, bending moments, torsioning and even 

bimoments. As it is shown in the books Ref 30, 35, application of 

uniform criterion – comparison to zero main determinant of stiffness 

matrix to the bar, or to structure Refs 105, 129, 170, 256, is very 

efficient (all by J.B.Obrębski). Next, some such numerical tests were 

done by J.Tolkstorf Refs 168, 176 where are shown certain ultimate 

curves or surfaces for critical sets of two or more combined loadings.  

 

 

On the ground of conditions (21), (22) and (23) can be determined 

combinations of critical external loadings including given boundary 

conditions, by means of analytical methods or by FDM or even by 

MathCAD application. 

 

 

In result were find diagrams of ultimate critical bar loading (for qy ,P), 

as e.g. in the Fig 37,  or ultimate critical surfaces (for P1, q2 , q3 ) as in 

the Fig 38. 
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Fig. 37. Ultimate critical curves of forces for simply supported beam 

with I cross-section (at axes 145.4 and 2161 - lower) and with channel 

cross-section (at axes 48.559 and 3386 - higher) 

 

 



 

a)

 

 

b)

 
Fig.38. b) Ultimate critical surface by given boundary conditions 

and scheme of the Fig 36a 

 

3.5.5. Examples of uniform criterion application 

In the paper Ref 105 where pointed some other methods of evaluation 

geometrical unchengeability of structures by: J.Karczewski and J.König 

or by J.B.Obrębski. They will be here not repeated. 

 

Examples of numerical results for some own tests, are given below. 

 

In example from Fig.39A, were additionally observed transversal 

displacements  u2  or  u3. 

 

 

A)

      

B)

 

Fig. 39. A) Displacements for middle point (B) of compressed bar; 

B) Values of  D=det(K(P)), for compressed bar. Buckling in plane 

 21
0 ; both Refs 11, 236, 170. 

 

Next in the book Ref 30 was presented example determination of 

dynamical stability of the straight, freely supported bar, Fig 40, based 

on three differential equilibrium equations of its axis, applying 

condition (22). The diagram at right side of Fig 40 was made on 

computer changing parameters P and ω. 

 
Fig. 40. Critical forces and values of free vibrations for freely supported 

bar Refs 30, 105. 

 

Next, in the Ref 129 where given analytical examples for composite 

bars and composite frames, based on theory contained in the books Refs 

30, 35. There as condition was applied identically as in V.Z. Vlasov’s 

book, equation (21), built on the basis of three differential equilibrium 

equations of bar axis, Figs 41A. Additionally, the examples were 

extended on bar boundary conditions shown in the Fig 41B. 

Geometrical characteristics of four composite CSs, Figs 20b-e, were 

calculated accordingly to theory proposed by J.B.Obrębski in the book 

Ref 35 and in some papers – e.g. Ref 235. 

 

Further, in the paper of Ref 129, was given the analytical example of 

critical loading determination, for simple frame shown in the Fig 41C. 

There, results were compared for five similar frames, but built of bars 

with homogenous and composite CSs, Fig 20, by symmetrical and 

unsymmetrical instability modes. 

 

A)

   
B)  

C)

 
Fig. 41. A) Schemes of eccentrically loaded and purely bended bars 

Refs 310, 30, 236. B) Different bars boundary conditions Refs126, 236. 

C) Frame and assumed deformation modes Refs 126, 236. 

 

It was efficiently tested, that stiffness matrix can be composed on basis 

of more than one, differential equations (Finite Differences Operators). 

Such test for three equations on one bar, Fig 42A was shown in Ref 146. 

It is similar to method used by J.B.Obrębski for space bar structures, 

called Difference-Matrix Equation Method (DMEM), Ref 11. 

 

Example of calculation of critical force applying FDM was presented 

e.g. in Refs 235, 238, where wooden bar was divided on 10 sections, Fig 

42B. 

 

A)

        

B)

 
Fig. 42. A) Three independent schemes for displacements of single 

bar Ref 146, 238. B) Axially compressed pine bar, 

 Refs 146, 235, 238. 

 



    

 i) 

 

Fig. 43. Reinforced concrete compressed bars and assumed 

bending scheme Refs 232, 238. 

 

The other example, concern the bar with variable rigidity (three zones of 

reinforcement). It was solved using linear finite differences operator and 

Vianello method, Figs 43a-d. It is possible to calculate the critical force 

P, using criterion (21), too. There can be applied operators of first or 

second order theory.  Similarly, for example from Fig 43i, critical force 

can be determined in three ways Ref 35. The first, as above, built with 

linear, first order operator by means of Vianello method Ref 35.  

 

The second, applying the same equations and moving right side terms 

with loadings to the left side ( 0QKx ), we come to condition (21) 

Ref 35. The third can use the mathematical approach of searching 

eigenvalues of the same equations. 

 

3.5.6. Determination of critical force using FEM 

Wide explanation of the Finite Element Method application, was in 

book Ref 312 given. There, as central point of the method is proposed 

comparison to zero of main determinant, of the whole structure, so 

called, general stability matrix (using theorem of Lagrange-Dirichlet). 

This approach seems to be much more complicated with comparison to 

the criterions (21, 22) presented here. It will be not wider discussed. 

 

3.5.7. Determination of critical loading using 3D-TSM 

The idea is not new. It was applied e.g. in the papers of  Z. Kączkowski, 

M.Witkowski, and A. Podhorecki (all Poland), and probably by the 

others. In that papers were used different Time-Finite Elements 

approaches, concerning of very simple structures, only.   

 

In the works of J.B.Obrębski and R.Szmit (wider literature see in  Refs 

109, 115, 120, 122, 124, 128, 133, 149, 223), in general case,  four  

differential  equilibrium  equations  as  the  function  of   time   and   

three unknown linear displacements and rotation of the bar (with regard 

to its longitudinal axis), were formally replaced by similar four Finite 

Differences Operators of Boolean type. There is assumed existence of 

four-dimensional space; where besides of three dimensions used in 

Euclides’ian space, the time is the fourth dimension. So, we get 3D-

Time Space. At the boundaries of considered space, should be applied 

modified sets of equations, Ref 223. Such four equations written for 

each point of division and for each time moment (point on time axis) are 

giving Dynamical Stiffness Matrix K. From mathematical point of view 

it gives set of linear algebraic equations (23). Looking for critical 

loading, we calculate D=det[K(P,ω,v,a,M,m,d)]. The quality of obtained 

results depends on the choice of assumed space division – specially, on 

the time step which should be carefully selected. Generally, we can 

conclude, that the method shows high accuracy of obtained results –

compared with some known in world literature examples. There is 

possibility to calculate displacements and internal forces, too. 

 

3.5.8. Part of instability and torsion by stresses calculation 

Is possibility of very easy and simultaneously exact calculation of 

critical loading of any type bars, under action of longitudinal and 

shearing forces, by moments and even by bimoment. Therefore, at all is 

right proposal by Obrębski, to dimensioning bars CSs using four 

instability coefficients wim , for each of four internal forces, including 

bimoment, (Refs 190, 191, Singapore  CI-PREMIER (1990) and Ref 30, 

32 (1991, 1999)) as in formula: 
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or even one wm  as below, only: 
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In both cases it was proposed to apply additionally Huber-Mises-

Hencky hypothesis, Eqn (20), similarly as in one of the previous Polish 

standards for steel structures e.g. PN-90/B-03200 (see Refs 30, 35 

Obrębski (1991, 1997)). 

 

Moreover, the coefficients increasing values of stresses by instability, 

can be calculated in uniform manner accordingly to well known 

formula, Refs 298, 30, 35: 

 

   

nP

nP
m

cr

i

wi
wi 

 ,                                                                  (26) 

 

where: Pi – internal force, Pi
cr – critical force for particular bar,   nw ,  n 

- safety coefficients by instability and by force action. Above formulae 

do not need more explanations, Ref 35. 

 

4. GEOMETRY OF SOME SPACE STRUCTURES 

Below, are considered three essential descriptions important for forming 

numerical algorithms. First, concerning of applied spaces and two 

approaches to structure geometry description, [1-6,8,10,12-14,17,21-

24].  

 

4.1. Applied Nets of Points – Considered Spaces 

Each of described theories, by numerical implementation needs another 

algorithm. It is interesting, that almost in all mentioned below programs 

were applied identical principles for input data. There, the global 

geometry of whole task (space bar structure or bar cross-section, only, 

etc.) can be described by means of Boole’s displacement operators, 

which for 3D-Time Space has the form (Figs 44-46,  54): 

 

   ),,,(),,,( 4332211321

,,, 4321 ataxaxaxtxxxE
aaaa

   .             (27) 

 

where:  - number of operation (or bar direction), ia  - operator’s 

exponents; both are integer numbers; t – is the time. For static tasks it 

can have simplified form as e.g. for 3D, Fig 44: 
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Fig. 44. Net of points definition in orthogonal 3D space 

 

 
Fig. 45. Net of points definition in orthogonal 2D space, only. 



Geometry of Structure in 3D, only 
Position of nodes in 3D space can be declared for the simplest 

orthogonal net of points, by short formula: 

 

   
iii lx ,                      (29) 

 

where: i  - global structure coordinates, i=1,2,3 , xi – integer numbers, 

and  li – modules of net of points – real numbers.  

 

 
Fig. 46. Definition of more important elements of space bar structures 

description. 

 

Examples of nets for 2D (i=2) and 3D (i=3), are shown in the Figs 45, 

44. Definitions of similar, more complicated nets of points are given in 

the Refs 11, 14, 15, 184, 200, 204, 217, 233, 279 and in Figs 48-52. 

 

In program system WDKM, as theoretically the most advanced, are used 

six essential coordinates systems. The first, global 
i
 as e.g. in Eqn 

(29) and three next: 

 iz  - local coordinate system in which is considered equilibrium of 

nodal forces and are calculated node displacements Fig 46a, 

 ii y  -coordinates for particular element (bar principal, reduced 

axes), with regard to it, are considered nodal bar internal forces, 

 
iv  - support coordinate system – for definition of given planes of each 

support shifting, Fig.46a. 

Definition of elements the structures description, explain the Fig.46. 

Two additional coordinates will be shown in the chapter 4.3.2. 

 

4.2. On the geometry of plane hexagonal grids 

In the works Refs 1-4, were investigated plane single layer grids and 

double layer hexagonal trusses. 

 

They were inscribed into inclined net of points, with angle 120O 

between axes, Fig 29. The repeatable nodes were of one type, only. 

Node is connecting three bars along which were assumed three 

directions =1,2,3 and three Boolea’s operators Eqn (28). Rotation of 

node by 180O was obtained thanks assumption of functional character of 

 exponent ai of Boole’s operators (Eqn (28)) and by introduction 

special mathematical operations (new elements of mathematic). In 

result, was obtained possibility of analytical solutions. 

 

The Fig 47 shows the biggest regular bar pattern with regular, which can 

be inscribed exactly in circle. Each smaller can be inscriber in smaller 

circles, too. 

 
Fig. 47. Maximal regular hexagonal grid inscribed into circle, Ref (4). 

 

4.3. Geometry of large space bar structures. 

Next step, after analysis of relatively simple space bar structures – as 

hexagonal ones, was theory prepared for any kind of space bar 

structures and its application in original own computer programs. As 

fundamental element of such theories, is geometrical description of such 

objects. 

 

4.3.1. Geometry, examples and architectural aspects of the family of 

two-curvature space bar structures. 

The geometry for such type of structures was consequently derived by 

means of vector calculus, Ref 11. There, were elaborated detailed 

mathematical relations and geometrical objects for following kinds of 

net of points: 

- orthogonal net of points, 

- translational net of points, 

- rotationally-translational net of points, 

- barrel net of points, 

- cylindrical structures, 

- ring net of points, 

- spherical net of points, 

- conical net of points, 

- toroidal net of points. 

Next it was extended on two, wery important nets of points for: 

- elliptical structures, 

- wavy structures. 

 

In all listed above cases, description starts from definition of the bar 

orientation in given net of points. Next, should be assumed the most 

convenient local node coordinates and operations on vectors defined in 

this coordinates. After preparation of such elements of analytical 

geometry, can be built whole numerical algorithm and programs, using 

additionally proper equilibrium equations of repeatable node. More 

detailed information on the matter, can be found in the work Ref 11. 

 

Below, are provided definitions, certain essential explanations and 

computer drawings of different forms, which should be very useful for 

civil engineering large scale coverings – domes, wavy domes, barrel and 

cylindrical vaults etc. It presents some information on previous author’s 

works concerning of computer graphics, analysis and synthesis of 

complicated space bar structures. There, description of structure global 

geometry and detailed topology is defined by introduction in input data 

the following groups of information:  

- kind of applied net of points,  

- list of nodes inscribed into declared net of points,  

- definition of repeatable nodes, 

- definition of repeatable bars, 

- given support system, 

- external loading. 

 

Some general assumptions of elaborated theories and programs, are 

explained a little in presented below Figs 48-52 

 

 

a) b)

 

c)

 
Fig. 48. a)Definition of regular net of points; b) c) transformation of 

orthogonal coordinates  xi  into curved space (surfaces). 



a)

 
 

b)

 
 

c)

  

d)

  
 

e)

 
Fig. 49. Possibilities to obtain various architectural effects by: a) choice 

of global shape of nets of points; b) choosing other parts of spherical net 

of points; c) d) location of structure on other parts of net of points; e) 

cutting convenient part of selected nets of points. 

It is assumed, that all nodes of structure are inscribed into regular net of 

points located in intersections of two, in general case, curved 

parametrical lines lying on some equi-distance smooth surfaces, Fig 

48a. There, are also explained general assumptions of structure 

geometry and some its detailed relations and formulae helpful by 

computer analysis of double-curvature bar structures (Figs 48-52. The 

architectural and mechanical aspects of considered objects are pointed, 

too. 

 

 

a)

 

b)

 

c)

  

d) 

 

Fig. 50. Definitions of different kinds of translational net of points   

a)

 b)

  
 

 

 c)

 
 

 

d)

 

 
e)

 

f)

 
 

g)

 
 

h)

 
 

i)

 
Fig. 51. Definition of nets of points: a) double curvature revolution type; 

b) toroidal (obtained from case a)); c) elliptical (modified net a)); d-i) 

applications for: double-layer spherical-, toroidal-, elliptical-, barrel-, 

ring-, and conical type bar structures  

   



  
a) 

  

b) 

  

c)  

 
d)

  

e)

 

f)

 

Fig. 52. Examples of wavy space bar structures: a) wavy toroidal, b) 

wavy supporting part for sphere, c) horizontal waves, d) horizontal-

vertical waves, e) absolute horizontal-vertical waves, f) vertical waves. 

The waves starts from certain radius ro. 

 

Described shaping of structures is accessible in two program systems 

WDKM and SPES. Moreover, there is possible numerical analysis, 

synthesis and optimization.  

 

Additional assumptions for geometry of space bar structures . By 

description of structure geometry and detailed its configuration, are used 

six coordinates Refs 11, 14, 15, 28,29 etc.: 

1. global orthogonal  
i  , with vector basis  

*

ig , Figs 44-46, 48-52, 

2. local coordinates orthogonal 
iz  with vector basis  

z

ig , for 

calculation of nodes displacements and equilibrium or motion 

equations,  
z

iiz gzr 


 , Figs 49-51, 

3. supports orthogonal coordinates  
iv   with vector basis  v

ig   for 

description of its  inclination 
v

iiv gvr 
   , 

4. parametrical coordinates xi for identifying of node positions in 
coordinates 

i  , Fig 48, 

5. parametrical curvilinear lines  
i  , Fig 48, 

6. elemental (bar) orthogonal coordinates  
i
 for calculate internal 

forces for each bar,  
iie tr 


 . 

In four above cases coordinates are real type variables: 3Ri   ,   

3Rzi 
 ,   3Rvi 

 ,   3Ri  . Only parametrical coordinates  xi  are 

integer type numbers. 

 

There, are unique functions defining global nodes positions in   3R  and 

vector basis of the local coordinates: 
z

iii

i ggx


),(: *   and *

kik

z

i gg


  

or in matrix form  

   
*

gg z  .                  (30) 

 

For structure description was used Boole’s operator Refs 1-5, 8, 11, 12, 

30 etc., directed along the bar with number    connecting two nodes  

A  and   B  as in the figure 54, Eqn (28). 

 

In all nodes of particular net of points the local coordinates  
iz  are 

defined identically. There were used three types of its orientation: 

1. The axes  
iz ║

i
 - parallel, possible to be applied for all kinds 

of nets of points. 

2. The axes:   1z - tangent to meridians of rotational nets of points;  

2z - tangent to parallels;   3z - orthogonal to both previous, (see 

Fig 49d). 

3. Cylindrical type as in the Fig 50, similar to type 2, but 2z ║ 3 . 

In this coordinates system are defined external loadings and calculated 

unknown nodes displacements. So, the choice of orientation of this 

coordinates was left for user of program. 

 

For adding two vectors of forces or displacements given in two nodes A 

and B connected by bar   (see Fig 54), is needed operation: 

   
nini uEAguE     , 

where, was defined as matrix scalar operation geometrical object: 

   
niin gEgA      . 

The same in matrix description (31) can be written as follow: 

   TTTTzz EEgggEgA   
**

   .                (31) 

 

For orthogonal net of points when iz ║ i  (type 1): then  I     and 

  ininA     - it is delta of Kronecker. 

In case of double-curvature revolution net of points (type 2) we have: 
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For cylindrical revolution net of points (type 3) we find: 
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Fig. 53. Definitions of rotation angles between coordinates  zi – local 

and  vi – of support.  
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where:   
iis sin   ,    

iic cos    , Fig 53. 

Moreover, are valid transformations between coordinates: 

   zB
o

    ,     

where  
o

B    is identical with  B   when: iis sin  ,  iic cos     



 i=1, 2, 3  and (see (32) and figure 54) 

   vBBvB
o

   . 

There, are valid reverse transformations: 

   zDv


  ,   
o

Dz   ,   Dv   ,   

where:       TBD  ,   
Too

BD  ,   
T

BD    . 

 

 
Fig. 54. Definition of angles 

i  for bar     inclination, (rigid nodes as 

in the Fig. 21). 

 

For elemental (bar) orthogonal coordinates  
i  the unit basis vectors are 

defined as follow: 
o
TBD 

0

 =       321  ttt   . 

The unit vectors   
it  are oriented along of longitudinal bar axis and 

along two principal axes of bar cross-section. Angle  
1   as rotation of 

the bar round the longitudinal bar axis is defined in input data. The two 

remaining angles - 
2  and  

3   are calculated accordingly to Fig 54 by 

formulae:  
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Projections of the bar   on axes 
iz depends on kind of applied net of 

points and on orientation of axes 
iz  (types 1, 2 or 3): 

For orthogonal net of points (type 1 of 
iz ):        iii all   . 

For double curvature revolution structures (type 2 of 
iz ):   

13

'

21   Arl   ,   
23

'

22   Arl   ,   
33

'

223   Arrl   , 

    
3322 lxRr    ,    

3332

'

2 )(  laxRr . 

For cylindrical structures (type 3 of 
iz ):   
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222   all   ,   
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and   
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'

1 larr   . 

 

For spherical structures (type 2):  it is particular case of double 

curvature revolution structures, where:     

   
33221 lxRrr    ,      

3332

'

2

'

1 )(  laxRrr  . 

 

For any case of net of points, including above and wavy structures, there 

is possible to regard, that local coordinates are parallel to global ones 

(type 1 of 
iz ) and than, we simply have: 

    ABl 111  
  ,   ABl 222  

  ,   ABl 333  
  . 

 

 

4.3.2. Geometrical fundations and architectural possibilities of 

UNIDOM space bar system. 

Contrary to family of spherical domes, commented in previous chapter, 

for UNIDOM structures are presented investigation results of its global 

geometry and bar pattern, only. Up to this time, detailed elements of 

mathematical description of  nodes and particular nodes, helpful for 

composition of equilibrium equations, were not elaborated. 

 

Fig. 55. Detailed geometry of rhombiicosidodecahedron. 

Basic parameters concerning the geometry of domes of polyhedron type, 

forming UNIDOM (UNIfied DOMes) space bar system, are elaborated. 

Therefore, below are shown formulae and drawings explaining in details 

geometry of such structures and possible architectural effects. In all 

cases the designed domes can be composed by application of very 

limited number of bars and nodes. So, the structure should be cheap and 

easy in prefabrication, but simultaneously variety of different 

architectural outlooks can be almost infinite. The possibilities proposed 

here, are much wider as e.g. in well known Unibat or Unistrut or Mero 

systems. Here is very important question, about global dimensions of 

whole structure, and detailed angles, dependently on the dimensions of 

one rectangular wall a b. When a=4B is side of pentagon. The B 

means the length of “blue” bar. There, were calculated the thicknesses 

of double-layer substructures: h=0.5B for rectangular substructure and 

for irregular sector of pentagon (Fig. 2C) and h=0.6454972244B for 

triangular substructures and for two different sectors of pentagonal 

substructure (Fig. 2C). 

b)    

 a)

……. 

 
c)

 

Fig. 56. Models and shaping of rhombiicosidodecahedron 



Calculated for rhombicosidodecahedron, essential dimensions and 

angles Figs 55, 56;  R=7.505 B, are as follow:  

pentagon, Fig 55a, when a=4B (B – length of blue bar): R=3.4026B,  
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Triangle, Fig 55b;  R=1.1547B,   
BR 154700538.1  ,   Bm 5773502692.0 . 
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Rectangle, Fig 55c;  R=2.236B,
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Calculated dimensions and angles (a=4B): for dodecahedron (K=0 and 

0 ): R=5.4768804 B,  o40869235.38   ,    o17317768.30   , 

   o58187003.68    and angle  
o

o
R

B
83626079.42

2
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






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. 

Up to the moment were discovered some possible bar patterns for flat 

double-layer pentagonal substructures, Fig 57A. Some next for single-layer 

substructures are shown in the Fig 57B. 

 

A) 

 

B) 

  
 

 

  
 

 

 
Fig. 57. Possible bar patterns for pentagon, by Zometool elements. 

 

A)

 

h=0.645 

=-2,202B 

 

B)

 

 

 

 

 

 

 

h=0.5 

 

=1,701B 

Fig. 58 

C)

 

h=0.645 

=0,525B 

Fig. 58. Global geometry of: A) Concave pentagon with possible bar 

patterns B) Convex – high possible arrangements by ZOMETOOL 

elements, C) Convex - low double-layer substructures. 

 

a)

 

b)

 
 

c)

 

Fig.e 59. Geometry of node: a) node used in Zometool kit; b) 

Rhombiicosidodecahedron as a model of node; c) Comparison of the 

nodes of rectangular and triangular substructures. 

 
Table 8. Numbers of bars connected in node. 

Type of node 

(polyhedron) 

Blue 

Rectangle 

Yellow 

Triangle 

Red 

Pentagon 

Rhombiicosidodecahedron 30 20 12 

 



Table 9. Inclination of all possible connections in node for B-blue, R-

red and Y-yellow bars. 

α Angle β  [deg] 

deg 0 20 33 37 57 59 60 70 90 110 120 121 123 143 147 160 180 

0 B  R     Y B Y     R  B 

20 B     B      B     B 

30         R         

45       Y    Y       

57 B   B    B  B    B   B 

70         Y         

90 B Y   R    B    R   Y B 

110         Y         

123 B   B    B  B    B   B 

135       Y    Y       

150         R         

160 B     B      B     B 

180 B  R     Y B Y     R  B 

 

Table 10. Comparison of the thickness h of double-layer substructures. 

 Type of substructure 

Rec-

tan-

gular 

Triangular Sector of pentagon  

as regular triangle 

Fig.58A  

Irregular 

sector, 

 Fig 58B 

Irregular 

sector  

Fig 58C 

h 0.5B 0.6454972244B 0.6454972244B 0.5B 0.6454972B 

Table 11. Elevation of central node in pentagonal substructure (a=4B) 

 
Type of pentagonal substructure 

Concave, Fig 58A High convex, Fig 58b Low convex, Fig58C 

H -2.202B 1.701B 0.525B 

 

Moreover, it was recognized geometry of node for UNIDOM space bar 

system, Fig 59, Ref 180, with two angles horizontal and vertical for 

defining inclination of the particular bars in 3D space. Detailed 

derivations, formulae, further drawings, remarks, conclusions and list of 

references are given in the paper given in mentioned LSCE 2007 book. 

 

5. ANALYSIS OF STRUCTURES 

Each elaborated theory, can be used for practical application by 

designers searching solutions in analytical or in numerical way. The 

analytical solutions, are very valuable, giving formulae ready for 

calculation of searched information. Unfortunately, most of such 

solutions concern of simplified tasks, only. 

 

In some cases of bar structures were found analytical results, in other 

hybrid solutions (analytically- numerical) and numerical, only. The last 

seems to be useful for almost any type structures. In next chapters are 

given some information about elaborated by author approaches to 

analysis of different types structures. 

 

5.1. Analytical solutions 

Here can be shortly presented two domains of analytical solutions. The 

first for hexagonal plane grids and the second for separate, straight bars. 

 

5.1.1. Solution for hexagonal grid 

As it was shown in chapter 3.2, in some works were found analytical 

solutions for hexagonal bar infinite band grid (bar plate),  loaded in each 

node by uniform loading (identical force in all nodes) or loaded 

regularly as in the Fig 26 a-d, by different boundary conditions on both 

edges. 

 

The second solution concern of hexagonal grid freely supported on 

external circle and loaded by identical forces (perpendicular) in each 

node. 

 

5.1.2. Examples of analytical solution for thin-walled bars 

For single straight thin-walled bars were obtained following solutions, 

Refs 30, 35: 

- Derived formulae for torsion angle and internal forces for 16 simple 

cases of loading and boundary conditions. 

- Some examples of formulae for critical forces of types: 

  - longitudinal force,  

  - excentrical longitudinal force, 

  - bending moments,  

  - critical vibration of bar under action of longitudinal force. 

- Solutions for bar interacting with surrounding media: air,  

   water, soil. 

 

5.2. Numerical algorithms and solutions 

There, were elaborated algorithms and programs for different types of 

structures: single straight bars, plane grids, wide class of space bar 

structures (including domes, cylindrical etc.), for elaboration of 

experimental results, calculations of geometrical characteristics of bar 

cross-sections, calculation of stresses etc. These algorithms were 

destined for: large computers with external memories, for PC 

computers, programmable calculators and for MS Excell. 

 

5.2.1. Algorithms and solutions for some  space bar structures 

In the dissertation Ref 4 (Ph.D.) were presented some numerical tests for 

double layer small tasks, shown in the Figs 32-34 (plane and 

cylindrical). For this purposes were prepared some programs listed in 

chapter 6.2. They can be easily extended on next applications. 

 

The other application of derived equations for hexagonal grids, were 

proposed in works Refs 4, 113, 135, 155. There, obtained analytically 

one equilibrium equation of node of finite differences character (for 

deflections, compare Fig 30) is applied to composition of stiffness 

matrix of whole structure. This way it is possible to have structures with 

more complicated shapes of its contour, and different loadings in each 

nodes. Such approach reduces drastically number of unknowns with 

regard to task, where are used three original equilibrium equations. 

 

Next some more advanced algorithms, are shortly listed in next 

chapters. 

 

5.2.2. Difference-Matrix Equation Method 

This manner of composition (Refs 4, 11, 28, 29,135,) of stiffness matrix 

of structure was applied in two large programs KMTD or KMTG and in 

the most universal WDKM. There, were applied physical relations for 

single bar, shown in Table 5, structure geometrical description, as in 

chapter 4.3, analysis in range of static and dynamics, theory of first and 

second order, finite dimensions of nodes Figs 21, 54; any bar pattern, 

any support systems including inclined sliding joints, any boundary 

conditions for free displacement function of each bar (including 

rotations), any loading of large structures: in nodes and  on the length of 

the bars (not to the end enoughly tested), possible declarations of any 

bar rigidities, etc. 

 

5.2.3. Application of Finite Differences Method 

The method firstly destined for teaching purposes, by means of 

universal program MRS, written by J.B. Obrębski (Refs 136, 155, 177; 

17,52 kB, only) quickly was applied to scientific purposes, for static, 

stability and dynamics of straight bars (including bridges, tall buildings) 

and plates. The range of applications of the method, was extended on 

3D-TSM for dynamics (see chapter 5.2.6 and Refs 133, 146, 165, 223, 

232, 237). Wider description and examples of application were given in 

two fundamental works – Refs 30, 155 (there see for wider references). 

 

The method gives possibility easily to take under consideration: 

 - different schemes of structure (including boundary conditions), 

 - variable rigidity of bar or platte, 

 - any kind of bar cross-sections (solid girders – homogenous or 

composite, tubes, rolled cross-sections, thin-walled, trusses, space 

bar trusses,  

 - variable –any loading system in each node, 

 - moving loads with variable path, velocity, jumping etc. (see 

chapter 5.2.6). 

Simultaneously, the solutions, in spite of complicated character of tasks, 

is solved very easily. The definition of applied equilibrium equations, 

scheme of structure, its loading and support systems, bar rigidities –are 



declared from keyboard by user… 

 

5.2.4. Own algorithms for space bar structures by Finite Element 

Method application 

There, were built two fundamental programs 

- small program FEM for didactic purposes in University of 

Warmia and Mazury in Olsztyn, 

- large program system for technical optimization of mainly space 

bar domes for (written and tested with A.H. Fahema) named as 

SPES (SPace structurES). 

Program system SPES consists of some programs for: 

 - printing scheme of structure, 

 - analysis of structure, 

 - analysis of calculated results (searching minimal or maximal 

values of displacements, internal forces, stresses, geometry of 

structure, volume of built in material, weight of structure, 

comparisons of some declared tasks (up to 20) etc. 

 

5.2.5. Solutions for composite structures 

Analysis of internal forces in elements of structures composed from 

composite bars (built of some materials forming longitudinal strips) can 

be done by means of all proper programs prepared by author, mentioned 

in this paper. Applying them, we shell introduce properly calculated 

bars rigidities, by means of theories given e.g. in books Refs 30, 32, 35 

or by programs MB, MBK, MB-PC (see chapter 6.4) 

 

5.2.6. 3D-Time Space Method for Dynamics 

The general equations of motion in the case of dynamics and theory of 

second order are rather difficult to be applied to analytical solutions 

useful for technical real solutions. So, a closed analytical solutions for 

dynamical tasks are rather very simple of academic character. Such 

limitations disappear when FDM is applied even for combined loadings. 

Such solutions are easy to be executed even by means of commercial 

MS Excel program.  

 

The 3D-Time Space Method uses time as fourth dimension. There is 

applied Finite Differences Method and program MRS. This way, are 

available solutions of tasks, almost impossible to realization by other 

approaches. Here, very easily can be modeled: - impact single or multi 

loading, moving alone or group of loadings, the last – can have straight 

or curved in any way path, mass acceleration (each one separately), 

slacking, starting and stopping, changing direction of move, including 

opposite ones, etc. Moreover, loading can act with different intensity 

and/or velocity, or jumping (landing aircraft) etc. The same can concern 

of contact problems for supports, etc. So, program of loading can be 

applied as variable in 3D space and in time...  

In the method, accordingly to scheme given in the Fig 60, behaviour of 

the structure in each time moment  t  considered individually, is 

included to common task as it is explained in the Figs 61, 62 

(J.B.Obrębski and Szmit Ref 223). 

 
Fig. 60. Real scheme of 3D-Time task numerical analysis. 

 

 
Fig. 61. Numerical representations of the 3D-T space of the Fig.60. 

 
Fig. 62. Detailed scheme of 2D dynamical stiffness matrix for structure 

considered in 3D-TSM with 6 nodes (b), 4 degrees of freedom per node 

(c) during 7 time moments (a). 

 

Some such examples were presented in previous author’s works. There, 

as central point of numerical algorithm is solution of Eqn (9), where this 

time matrix  K  is called as dynamical stiffness matrix. Applying FDM 

we can modeling many tasks, steering proper steps along all of four axes 

of 3D-T space. As particular cases, there can be used 2D-T (plates, 

shells) or 1D-T (beams) spaces. From numerical point of view, always it 

is 2D problem – two dimensional, square stiffness matrix K   Eqns 21-

23, Refs 115, 122, 124,  128, 133, 149, 169, 223, 232, 238, 240, 256. 

a)

  
 

b)

 
Fig. 63. Scheme of bridge with moving load a), with bridge cross-

section b). 

 

 
Proposed approach is very similar to DMEM, now applied to 3D-Time 

space (3D-T). It brings us to name of the: 3D-Time Space Difference-

Matrix Equation Method (3DT-DMEM). All kinds of above approaches, 

together will be named 3D-TSM. 

 



 

 

    
Fig. 64. Diagrams of bridge deflections [cm] under moving load on 

bridge with span 100m (Fig.63) in eleven time moments (series), with 

parameters: loading mass G=100t, loading velocity v=36, 180, 360, 720, 

3600km/h, bridge mass μ=0.022 695 016kNs2/cm, its rigidity EI=2.083 

333E+13 kNcm2, Refs 240, 241.  

 

 

A)

   

B)

    
 

Fig.65. Freely supported steel box beam with moving load Ref 238; 

v=36km/h A) v=360 km/h B). 

 

Simplicity of the method, allow on its implementation by R.Szmit for 

tall-buildings, on standard PC computer series Pentium, using 

MathCAD and Excel programs, too (Ph.D. dissertation Ref 281). 

Mentioned commercial programs as to general, were not comfortable 

and not to the end efficient for 3DT-DMEM application.  

 

Therefore, in the J.B.Obrębski’s works Refs 105, 232, 235-238 the 

attention was turned on numerical implementation of the method, where 

is possible: 

- to apply special, general and simple program MRS (very small 

17,52kB!!) author J.B.Obrębski (Refs 110, 113, 117, 135, 155,  

240), used for teaching of the mechanics principles for beams and 

plates etc.), 

- to use any kind of sets of equilibrium equations, of Finite 

Differences (first or second order etc.), including tasks concerning 

of 3D-Time space, where the method is oriented on straight bars 

and in it:  tall-buildings, bridges, foundation piles (driving in) etc. 

- application of above simple standard program for the beams, where 

is possible to consider influence of elastic three-parametrical 

Winkler foundation, interaction with wind or fluid, friction etc., to 

plates and shells including dynamics and stability, too (J.B. 

Obrębski Ref 30), 

- modelling of above structures, homogenous, anisotropic and 

composite, 

- modelling of movable loadings – e.g. car(s) on a bridge (as beam or 

as plate), 

- to use advantages following of repeatability of the structure nodes 

and loading, 

  - to consider simple-, elastic-, rigid and intermediate supports of 

investigated structures. 

 

The works of J.B.Obrębski Refs 237, 238, 240, 241 over the 3D-TSM 

gives positive answers on all above questions bring us to next category, 

exact and relatively simple numerical engineering solutions. They are 

easy in application and comparative or even often better then FEM 

results.  

 

The numerical examples shows Figs.63-65. In the last example the 

velocity (about 720km/h) of moving mass G can be considered as 

critical one, Figs. 63, 64. 

 

 

 

6. OWN PROGRAMS AND SYSTEMS FOR ANALYSIS AND 

SYNTHESIS OF STRUCTURES 

Theories associated with these problems, are rather complicated - 

mathematically advanced and therefore laborious by practical 

calculations. So, for such easy reason all above problems were solved by 

means of computer. The particular problems, accordingly to 

development of computer technology, were implemented on successive, 

the most popular in Poland computers, of particular its generations, Ref 

85, 94, 117, 155. 

 

The programs are based on own theories named: Difference-Matrix 

Equation Method, on Finite Element Method (FEM) and even of Finite 

Differences Method – including 3D-Time Space Method (for dynamics) 

dependently on its destination and analysed problems. Moreover, some 

programs are oriented on strength analysis of single bars including these 

with thin-walled cross-sections, full and composite ones. There are 

applied algorithms using many theoretical formulae.  

 

 

The author from 1970 was writing with different intensity the computer 

programs and systems oriented on needs of civil engineering. In this 

time period, programs were written in many languages, from which to 

more important belong: Odra Algol, Algol 1204, Fortran, Turbo Pascal i 

C++. In years 1974-1999, specially intensively was working on large 

program systems, documented in book form, written in Polish and German 

Refs 28, 29. Numerous papers were published in conference proceedings 

in English, too. These programs can be assembled in five groups. 

 

 

6.1. Programs for solution of sets of linear algebraic equations. 

There, should be mentioned: 

- solution of set of algebraic linear equations by Gauss method for 

symmetrical matrix, Fig 67, 

 - solution of set of algebraic linear equations by Gauss method for 

general square matrix, Fig 66. 

Above programs were written in many versions: 

 - executing calculations in computer memory, only, 

 - using computer memory and external memories (drums and  

magnetic tapes), 

 - using computer memory and virtual drums, etc. 

 

 

 
Fig. 66. Scheme of unsymmetrical set of linear algebraic equations. 

 



 
Fig. 67. Scheme of symmetrical set of algebraic equations. 

 

6.2. Elaborated own programs oriented on hexagonal structures 

Programs in Algol for: 

 - circular plane hexagonal grid, 

 - double-layer plane space bar truss type I (Fig  , Ref 4), 

 - double-layer plane space bar truss type II (Fig  , Refs 3,4), 

 - cylindrical double-layer space bar truss (type II Fig  ,Refs 3,4), 

 

6.3. Programs for large space bar structures 

Here, can be pointed some following programs: 

KM – program written in Algol 1204, latter translated on FORTRAN. It is 

destined for analysis of structures with nodes inscribed in orthogonal net of 

points, only. 

KMTD – larger version of KM program, on Odra 1305 computer, written 

in FORTRAN, extended on automatic dimensioning of circular, tubular 

cross-sections, accordingly to allowable stresses method, accordingly to 

PN-64/B-03220 (aluminium structures) or PN-76/B-03200 (steel 

structures). There, program proposes proper size of bars cross-sections, by 

defined structure global geometry, types of its cross-sections, loading 

system and supporting system. 

KMTG – identical program as KMTD , but automatically dimensioning of 

circular straight tubes, accordingly to ultimate states method, by PN-80/B-

03200.  

 
Fig. 68. Definition of simplest, double curvature, revolution net of 

points. 

 

WDKM – it is system of about 314 cooperating procedures written in 

FORTRAN for Odra 1305 computer. It enables analysis and automatic 

dimensioning of structures inscribed in four types of net of points Refs 11, 

14, 15 etc.: 

   - orthogonal, Figs 44, 45, 

   - rotational with two centres of curvatures, Fig 51a, 68, 

   - translational net of points determined by any type mathematical surface 

(translated along axis z ) and two families of vertical  planes, Fig 50a,b, 

69. 

   - revolution-translational nets of points with leading, mathematical line 

rotating around axis, Fig 50c,d. 

Global shape of structure can be changed in input data by declaration other 

number of a few parameters. 

 
Fig. 69. Definition of the translational nets of points - here as leading 

global surface is used hyperbolical paraboloid and d=zo+Δz. 

 

c)

 
d)

  
Fig. 70 Types of cross-sections automaticly dimensioned in WDKM 

program system, with shown points for calculation of stresses 

 (compre Fig. 22). 

 

So described the structures global geometry permits in easy manner to 

generate descriptions and input data for specially large space bar 

structures, one- and two-layer: spherical, cylindrical vaults, barrel, conical, 

toroidal etc. This way can be easily described and analysed similar 

structures as generated by Formian (by H.Nooshin) and tensegrity domes 

proposed by  J.Rębielak. 

 

SPES – it is system of a few cooperating programs, composed of about 

100 common procedures. It is destined for analysis and semi-optimization 

of rotational, elliptical, complicated space bar domes: single- and multi-

layered. It was built in cooperation with A.H.Fahema (Libya) for his doctor 

thesis. Three essential programs for input data, solver and analyser were 

written in FORTRAN and two in C++ for PC computers. These programs 

can describe, analyse and optimize trusses or frames with general shape 

identical as by WDKM, extended on elliptic, and cyclic wavy domes, with 

vertical and/or horizontal waves. 

 

There, is possible static analysis, only, and comparisons up to 20 similar 

structures, with regard to up to 20 objective criterions of optimization. 

Some diagrams facilitate to compare results of investigated objective 

criterions. It permits for designer to do last decision about the structure 

choice. There are possible to be compared: maximal forces, stresses, 

displacements, elastic work of structure, elevation of highest node, number 

of nodes, bars etc. Description of structures is there similar and probably 

sometime wider as in H.Nooshin’s FORMIAN programs. 

 

6.4. Programs for bars strength analysis 

It were built some small programs for auxiliary tasks of strength 

calculations for straight bars with any cross-sections. They were written in 

Turbo Pascal: 

MB – program for calculation of geometrical characteristics of the bars: 

area, gravity centre, position of principal axes and inertia moments. The 

cross-section is modelled from smaller elementary fugures as: rectangular, 

triangle, one quarter of circle and circle. 

MBK – Program for calculation of geometrical characteristics of 

composite cross-sections. It is similar to MB program, but there each 

elementary figure, defining whole cross-section, can be declared as made 

of different materials [11]. 

MB-PC – it is the program in Turbo Pascal, producing similar results as 

MB or MBK programs, but for thin-walled rectangular cross-sections open 

or closed. There is graphics for drawing diagrams of: coordinates, sectorial 

coordinates, usual- and sectorial -statical moments. 

NG – program for calculation of principal stresses and its directions, for 

plane and 3D states of stresses. 

NK – program for calculation of critical forces and stresses, too, for 

straight bar. 

HMH – program calculating values of reduced stresses accordingly to 

Huber-Mizes-Henckey hypothesis. It draws for given material ultimate 

curve and shows position of actual state of stresses. 

STAN – this program calculate and draws values and diagrams of internal 

forces, geometrical characteristics, including warping ones and stresses for 

cantilever thin-walled beam with open or closed rectangular cross-section 

and by two cases of boundary conditions, Fig 4A. Identical beams were 

investigated experimentally for checking foundations of theories for thin-

walled bars Refs 30, 32, 35. 



6.5. Programs to elaboration of own experimental results. 

Here, are listed small programs, destined for facilitating elaboration of 

experimental results for beams analysed by program STAN, too. They are 

written in Turbo Pascal. 

UI – this program elaborates longitudinal and circuital displacements in 

particular cross-section. 

U3 – the program elaborates displacements perpendicular to bar cross-

section, for the same cantilever beam. 

TEL – elaborates experimental results of electro-resistance measurements 

for considered bar. It calculates strains, stresses and draw proper diagrams. 

TELW – it draws the diagrams, only, on basis of data produced by 

program TEL. 

TAB – this program calculates values of such internal forces as bimoment 

and bending-torsion moment using experimental results. It is done for bars 

identical as calculated by programs STAN, MB-PC, TEL and TELW. 

YOUNG – it calculates Young’s modulus measured experimentally. 

BETA – it enables calculation of certain coefficient correcting bar 

torsional rigidity for thin-walled, investigated as above bars (see theories of 

Vlasov and Ref 30, 32). 

 

6.6. Programs Elaborated Specially for Didactic. 

There were written two programs MES and MRS destined in the beginning 

for students teaching in University of Warmia and Mazury and in Warsaw 

University of Technology, on faculties of Civil Engineering, both Poland. 

The programs are written in Turbo Pascal and have no any graphic. Its 

destination is to show for students principles of foundations relatively 

Finite Element Method and Finite Differences Method. 

MES – the program enables analysis of small plane trusses and frames, 

producing displacements, internal forces and reactions. It has the didactic 

destination, only. 

MRS – the program is oriented on analysis by Finite Differences Method 

of any task which can be described by differential equations, transformed 

to finite differences operators with defined boundary conditions. These 

operators – equilibrium equations and next physical relations for internal 

forces, are defined in input data... So, the program is very universal. Till 

now, it was used for: bended bars and plates, for bars and plates on elastic 

foundation, for stability problems, for 3D-Time Space Method for 

dynamics of tall buildings and bridges under moving loads, etc. There, the 

analysed bars can have full or thin-walled cross-sections, to be 

homogenous or composite, to have constant or variable cross-sections on 

its length etc. There can be applied any loading system – variable in 3D 

and in time, too. 

 

6.7. Numerical dimensioning of bar structures 

To special function of programs KMTD  ,  KMTG and WDKM belong 

automatic dimensioning of bar structures. The programs for given 

structure, with defined scheme (bar pattern, support system, loading 

system, declared types of bar cross-sections) are searching dimensions 

of cross-sections, assuring safe state of stresses in whole object. The 

procedure of selection of proper dimensions has iterative character and 

run in maximum 3 steps. 

 

6.8. Optimisation and semi-optimization of  large space bar domes 

Below are given some drawings (Ref 17, Figs 71-76), only, showing 

possibilities of the programs in two domains – analysis and shape and 

form finding. The wider comments and next examples can be shown 

during presentation. 

 

 
Fig. 71. Single layer space bar structure stretched on torus. 

 

 
Fig. 72. Single layer space bar structure stretched on torus. 

 
Fig. 73. Scheme of double layer, conical space bar structure. 

 

 
Fig. 74. Scheme of double layer, elliptical space bar structure. 

 

 
Fig. 75. Scheme of double layer, wavy space bar structure – horizontal 

waves. 

 
Fig. 76. Scheme of double layer, wavy space bar structure – horizontal 

and vertical waves. 

 

7. OBSERVED EXACTNESS OF STRUCTURES ANALYSIS 

In literature are accessible some reported information, about errors, 

which can be made by incapable or improper application of analyses 

theoretical or computer, too. The author was publishing some papers 

discussing such problems, Refs 77, 139, 142, 160, 162, 163, 167, 172, 

234, 247. 

 

There, are well known examples (below are quoted a few, only) that: 

- application FEM to analysis of single bars can give error up to 394%, 

Pruki and Lopez Ref 302 (2001); - by analysis of core for tall 

building, warping normal stresses – from torsion, can reach 270% of 

normal stresses from bending, Smith and Coull, Ref 304 (1991);  

- taking not into consideration of reinforcement in bended concrete 

elements, gives deflections bigger e.g. about 95% (numerical tests, 

Obrębski (LSCE 1995-2006); 

- torsion in most of computer analyses is to simply described, Obrębski 

(LSCE 1995-2006), 



- critical compressing force of bending-torsion type for steel column 

(high 400cm, with I 20x20 CS), reach value Pcr=1202kN, when 

critical force of bending type only (Euler), has value Pcr=1852kN, 

(omitting torsion we obtain error about 54%), book Obrębski Ref 30 

(1991). 

 

It is well known, that for any type bars (TW, compact, homogenous or 

composite) with torsion appears bimoment and bending-torsion 

moment, both generating significant warping stresses. 

 

7.1. Accuracy of designing process in the light of contemporary 

knowledge. 

In some author’s papers were presented observations on some methods 

of structures analyses, which can make designing process of much 

higher quality and erected objects much more safe. It concern of some 

steps of designing process, mainly concerning of structure analysis: 

stiffness calculation, determination of internal forces, stresses 

calculations and at last dimensioning of cross-sections (CSs). On each 

of these steps, by nowadays widely applied approaches, can be 

generated significant errors. Such conclusion follows of compared some 

results of given similar analyses: analytical, numerical and 

experimental, performed for many different objects and types of 

investigated tasks, own and quoted in literature. There are pointed high 

uncertainty obtained results, especially often when produced by 

computer. Next, in some other analytical and experimental examples, is 

visible strong influence of bimoment on stresses and on instability of 

thin-walled bars. The other serious problem concern of the mechanics of 

structures built of composite bars. So, it is recommended to apply better 

theories and to prove and evaluate obtained results in some independent 

ways, including experiments, too.  

 

7.2. Short Description of Quoted Examples - Results and Comments 

 

□ Examples Known From Literature. In the papers Refs 172, 247, 

were shown some extreme examples which indicate possible errors.  

► FEM Tests. Pruki & Lopes Ref 303, an example of freely supported 

concrete beam, uniformly loaded, have given. There, were compared 

longitudinal stresses calculated by three well known programs and 

errors determined by uniform formula. There were presented results for 

53 types of beam divisions, and different type finite elements, totally 

172 times! The error e<1% with comparison to analytical solution was 

obtained 7 times, only… (4.06% of all examples); e>20% in 91 tests 

(52.9%); e>50% in 33 cases (19.18%); e>100% to 394%, in 10 cases 

(5.81%). 

► Experiments and FEM Results. Glinicka in she’s habilitation thesis, 

Ref 297, hes investigated thin-walled steel girders for window or door 

headers, loaded by two concentrated forces. The steel beams have 

rectangular closed box cross-sections or of some open types, filled by 

foamed concrete, too. Comparing values of loadings giving deflection 

value 3 mm, in one case only convergence of experimental and 

numerical results was quite well, in remaining errors were from 

e=15.6% up to 88.8%. 

► Torsion of thin-walled bars. There, coefficient β correcting calculated 

bar torsion rigidity, measured by Obrębski and Urbaniak (Refs 195, 

197) was verified by Jankowska using FEM, Ref 119. The idea was 

simple. The thin-walled bar is loaded by torsion moment and proper 

torsion angle must be calculated or measured, and next both were used 

for calculations. The experimental curves are strongly nonlinear when 

adequate numerical ones are almost linear. Moreover, three curves for 

the same bar, dependently on applied elements, are almost horizontal 

lines with values β=1.5; 2.55; 2.75 (there p=2.75/1.5=1.83). 

 ► Comparison of Optical and FEM Approaches. Dymny et al were 

presented investigations performed on order of European Union. There, 

special plane specimen was tested. Interferograms obtained 

experimentally and synthetic calculated numerically, were compared. 

Differences of two pictures obtained in both above ways are very strong. 

 ► Symmetry by Numerical Solutions. In the master degree theses were 

investigated double layer space bar structures. There, as purpose was 

checking the exactness of numerical calculations. Symmetry of structure 

was modelled in three ways. Nearby plane of symmetry internal forces 

were smaller up to 21.4% and deflections for quarter of structure bigger 

up to +14.2% of obtained for whole structure. Part of the structure is 

working as having smaller rigidity Refs 263, 264. 

► Other Experiments (LSCE 2002). The first by Gleich, concern 

verification of numerical analysis of adhesive connections. By oral 

presentation was reported dramatic difference of diagrams character of 

failure load - theoretical and experimental. The example by Meier et al 

concern of strengthening of reinforced bridges and tubular masts by 

carbon-fibre reinforced polymers. Curves obtained experimentally and 

calculated for ultimate load are remarkably different. 

 

□ Composite Bars. For such bars is destined theory Refs 30, 35 (see 

LSCE 95, 2004, too). There, if we change value of general Young’s 

modulus, normal stresses, bar elongation and strains are still the same, 

but values of reduced characteristics are changed. Moreover, the 

composite bars, in all cases have the rigidities much higher, than known 

from traditional strength of materials. It has influence on stresses and 

displacements. So, numerical analyses should take into consideration 

reduced geometrical characteristics, on stages of internal forces and 

stresses calculation. 

 

□ Some Numerical Tests on Simple and Space Bar Structures with 

variable CSs.  

►Cantilever beam with constant and variable rigidity, triangle or 

trapezium type (LSCE 2002). Were derived analytically formulae and 

values of deflections. These results were compared with numerical 

calculations done by Finite Differences Method, with differential 

equation of fourth order. At the end the triangular cantilever, rigidity 

EI2=0 and the analysis is impossible (division by zero). In the case of 

trapezium type bar by FDM variable rigidity is not visible for algorithm. 

► Frames With Variable Rigidity. The test concern of three plane 

frames having variable rigidity of bars (more stiff ends). All bars have 

thin-walled rectangular cross-section 10x20cm of two types – open and 

closed with two walls thicknesses. The numerical algorithms needs to 

calculate torsion moments of inertia I1 (Refs 30, 32). It depends on the 

length of bar section and on functions sh(x) and ch(x). There, computers 

accepts x<224, only. It brings on computer approaches strong 

limitations.  

 

□ Next Observations and Proposed Theories.  

►In next examples it is visible influence on results quality of applied: 

methods, theoretical or numerical model and input data for numerical 

analysis.  

► The bimoment is evidently real internal force, very dangerous for 

structures, which should be seriously considered by designing of objects 

composed specially of thin-walled bars. In nowadays analyses, computer 

programs and standards, the bimoment is completely ignored! Instead of 

possible good analytical analysis (Refs 30,35) its influence is taken into 

consideration applying some empirical coefficients, assumption of 

“effective” (?) cross-sections etc.  

►Numerical modelling of shape finding gives certain approximation of 

results obtained experimentally (Ramm’s shape numerical optimisation, 

and Isler’s experiment)  

►Applying author’s, new theories and programs - for strength analysis of 

composite bars, for global analysis of space bar structures (Refs 11, 30, 35) 

and the 3D-Time Space Method for dynamics of some type tasks, etc. the 

possibility to do big errors is seriously reduced.  

 

7.3. Evaluation of computer measurements by modern System 5000 

of the firm VISHAY.  

There (Ref. 282), were applied rosettes with basis of each of the three 

sensors 3 mm. In spite of careful preparation of measurements, the 4 

sensors in 3 cross-sections (on 32) were not working. 

It seems, that by such excellent equipment should to give very exact 

results. Unfortunately, after careful examination of presented materials 

(Ref. 282) we find, that  there we can have many to wish. So, in 3 cross-

sections of model type L were applied 8 loading levels. In proper tables 

for stresses we find lack of results (inscription - #ARG!) for all 25 

measured points for first loading level and minimum one such inscription 

in first 3 to 6 loading levels, on 8! Similarly, in remaining 29 cross-sections 



of frames type L, T and Y, were applied 9 loading levels. There also was 

lack of results (inscription - #ARG!) for all 25 measured points of first 

loading level and minimum one such inscription for 3 to 9 loading levels 

(on 9!!). Even in 4 cross-sections on 32 were not presented error-less 

results. So, in 4 cross-sections on 32 were not presented complete results. 

 

In 3 next cross-sections, full information was given for the highest (9th) 

loading level.  

 

So, it can be concluded, that by computer elaboration of electro-

resistance measurements results, the quality of obtained information 

was rather weak. Contrary, by manual measurements and results 

elaboration, similar problems were not observed. 

 

7.4. Summary to the problems of accuracy of structures analysis 

■ Computer results in many cases can be regarded as certain simulation 

of the phenomena, only. It often gives the approximate evaluation of 

investigated problem.  

■ Preparation of complicated projects, without experimental verification 

is unbelievable. The part of experiment in evaluation of structure 

behaviour is rather without any discussion.  

■ Obtained errors in numerical analyses applying FEM can reach even 

394%. So, we shell be very cautious with application of its results.  

■ Application of reduced geometrical characteristics on each stages of 

bar (and other) structures analyses, is recommended. It permits to 

eliminate significant errors in evaluation of internal forces, 

displacements and stresses.  

■ Still, in some situations, even applying computers we have serious 

limitation of exactness of obtained results.  

■ Calculation of the half or the quarter of symmetrical structures, can 

give remarkable errors!  

■ Some of calculated results are dramatically different from reality. A 

progress can be obtained after its verification or calibration by 

experiments.  

 

Next conclusions the author leaves for the reader. In quoted references 

are quoted next wider literature lists. Quoted papers gives more 

information about some possible sources of errors.  

 

8. SUPERVISED WORKS 

The author has promoted some dissertations, as well of M.Sc. level as 

Ph.D. , too. Below is given its short description. 

 

8.1. Supervised master degree works 

All together there were prepared and successfully finished 17 such 

works. They can be classified in following manner: 

 - analysis of thin-walled bars, Refs 259, 267, 271, 

 - experimental analysis of thin-walled bars, Ref 272, 

 - analysis of space bar structures – plane roofs, Refs 262, 263, 264,  

 - buildings, Refs 260, 261, 265, 

 - bridges 266,268, 

 - numerical programs, Refs 269, 270, 

 - projects, Refs 273-275. 

 

Below are shown some pictures explaining categories of investigated 

structures. 

 
Fig. 77. Double layer truss investigated by  M.Kowalski Ref 264.  

LSCE 2005 ¼: Nodes – 97-, unknowns – 291-294, members – 324-328. 

 
Fig. 78. W. Słabosz, Ref 263,   LSCE 2005. 

Nodes – 84-265, unknowns up to – 795, 

 

 

 
Fig. 79. Double layer truss investigated by B. Zbyszyński; nodes – 97-

630, unknowns up to – 1890, Ref 262. 

 

a)

 

 

 
Fig. 80. Diploma project, by P.Kierzkowski and J.Tolksdorf,  

Refs 274, 275. 



 

 
Fig. 81. Diploma project, supervisor J. Karczewski, analysis by progtam 

KMTD.  Nodes – 697, unknowns – 2091, wide of half band - 92 

 

 

8.2. Supervised Philosophy Doctor dissertations 

There, were successfully elaborated and finished 6 such dissertations. 

Two next are continued. These  Ph.D. dissertations can be classified in 

following manner: 

 -analysis of thin-walled bars, Refs 276, 277, 278, 283, 

 - space bar domes, Refs 279, 280, 

 - tall buildings, Ref 281, 

 - analysis of thin-walled frames, Ref 282, 

Some examples of structures investigated in this category dissertations 

are presented by following Figures. 

 

 

 

a)

 
 

b)

 
Fig. 82. a) scheme and b) defections of tall building, investigated by 

R.Szmit, Ref 281. 

 

 

 

 

 

 

 
Fig.  83. Variants of dome investigated by A.H.Rhuma, Ref 280, for 

optimal solution. Nodes – 225, unknowns – 675, members – 616, span 

30m. 

 

 

 

9. PARTICIPATION IN DESIGNED PROJECTS 

Below are presented a few examples of structures calculated by 

programs elaborated by author. The general schemes and some 

numerical parameters are quoted, only. 

 
Fig. 84. Scheme of calculated shipyard hall in Szczecin, (app. 1978) 

Nodes – 326, unknowns – 978, wide of half-band – 66, Ref 28, 29. 

 

 

 
Fig. 85. Scheme of MEGASAM - market hall in Warsaw, app.1978. 

Nodes – 1079, unknowns – 3237, wide of half band – 165, Ref 11. 

 



 
Fig. 86. Scheme of frame investigated by R. Nagórski, Ref 299. 

 

The other example, calculated for purposes of habilitation thesis of R. 

Nagórski, concern of a frame of tall building, with rectangular cross-

section. The bars of frame form the tubular frame with 312 nodes (24 on 

each story – net 4 x 8 modulae, 13 levels), including 24 supporting 

points wholly fixed or sliding articulated joint (hinge. The task has 1972 

degrees of freedom, with width of half-band – 150. Time of  

computations was 4.5 hours. The calculations were performed for 

comparison with own theory of R. Nagórski with the others, Ref 299. 

 

 

 
Fig. 87. Competition project – bird view of proposed two torus type 

”gaps” to be infilled to the building of Faculty of Technical Sciences on 

the campus of Warmia  and Mazury University in Olsztyn,  

Refs 145, 162. 

 

 

10. WRITTEN BOOKS AND OTHER ACTIVITY 

The author has written alone 4 monographs and 2 as co-author. Here in 

a few photos are presented its front covers Figs 89-92. 

 

 

10.1. Recommendations. 

Separate domain of author’s activity and publications, besides of above 

shown books, constitute popularization of new ideas and technologies: 

 - known lightweight structures, 

 - evaluation of known structural systems, 

 - new structural systems, materials, theories, method of analysis and 

synthesis. 

To this category of papers belongs e.g. Refs  117,123, 142, 148, 162, 

167, 177, 229, 242, 246, 248, 251, 253 etc. 

 

 

11. CONCLUSIONS 

These all own elaborated theories, algorithms and programs permit 

nowadays, together, to design much better then in the past. But the man 

– user and designer, is there still in central point of each technical 

project. 

 

Short review of mentioned above problems permit on formulation of the 

following principal conclusions. 

1. In many tasks it is possibility to analyze the structures much more 

exactly, applying better, proposed here uniform theory. 

2. The critical state of loading can be calculated for any set of combined 

loadings. It is possible to find there the critical curves and even 

critical surfaces. It is possible for composite bars, too Refs 225, 227, 

170. 

3. Application of Finite Differences Method seriously is extending a 

range of possible solutions. 

4. It is now evident, that nowadays methods of analysis should be 

revised and completed by some elements of presented above theory. 

It should significantly improve safety of designed structures. 

5. There, are recommended theories and programs elaborated by author. 

6. This large paper can be, after improving and extending, certain 

skeleton of a monograph about possible modern analysis of mainly 

bar structures. 

7. In this paper, the more important remarks and conclusions are 

presented, only.  

8. At last, it should be pointed, that nowadays, in standards torsion and 

bimoment are almost completely neglected.  

9. Moreover, there is big tendency to eliminate from dimensioning 

process of stresses calculations. It all together, appears as highly 

dangerous. 

10. Besides experiences with mentioned above performed own 

programs, effectively were applied some commercial programs as 

ROBOT, Math-CAD, EXCELL, etc. which can be used for 

complicated calculations and results presentation of many tasks.  

 

 

 

 

 

 

 

       
Fig. 88. Cementary chappel, front view and cross-section (designers: 

J.B. Obrębski – conception and construction; Konrad Obrębski – 

architecture), Ref 166, 167. 
 

 



     
Fig. 89. Doctor and Habilitation thesis of the author, Refs 4, 11 

 

     
Fig. 90.  Two editions of lecture notes, Refs 30, 32 

 

 

      
Fig. 91. Two editions of the book on static of structural bar roofs,  

Refs 28, 29 

  

     
Fig. 92.  Lecture notes – “Strength of Materials” Ref 35,  and example 

of 4th proceedings of the International Colloquium on Lightweight 

Structures in Civil Engineering, Warsaw, 1998, Ref  36. 
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Structures, 10-14.11.1997, Singapore, pp.661-670.  

215. J.B.Obrębski: Computer application in some experimental stress 

analysis. XXXVI International Conference on Experimental Stress 

Analysis, EAN'98, Podbanske, Slovakia 2-4. June 1998, (patrz B.1.9).  

216. J.B.Obrębski: Mechanics and strength of composite space bar 

structures. (General lecture 30min) Intern. IASS Congress on Spatial 

Structures in New Renovation Projects of Buildings and Constructions. 

Moscow, Russia, 22-26 June 1998. 

217. J.B.Obrębski, A.H.Fahema: Advantages in shape and form finding 

for wide class of space bar structures. Structural Engineering World 

Congress (SEWC), Structural Engineering World Wide, San Francisco, 

18-23 July, 1998, Elsevier, Amsterdam-Lausanne-New York-

Oxford-Shannon-Singapore-Tokyo, ISBN 0-08-042845-2 (Abstracts 

volume p.668) & CD-ROM with papers.  

218. J.B.Obrębski, A.H.Fahema, M.H.Rhuma, Programs for numerical 

dimensioning and optimization of space bar vaults and domes. LSA'98 

Congress, Lightweight Structures in Architecture Engineering and 

Construction, 5-9 October, 1998, Sydney, Australia, Published by 

LSAA, ISBN 0 9586065 2 8 (vol.1), pp.517-526. 

219. J.B.Obrębski: Some rules and observations on the composite bar 

structures mechanical analysis. Int. IASS 40th Aniversary Congress. 

Madrid, 20-24 September, 1999. 

220. J.B.Obrębski: Mechanical point of view on modelling of space 

structures made of composite bars. Int. IASS Symp. Istanbul, 29.05-

2.06.2000, pp.491-500. 

221. J.B.Obrębski: Nonlinear character of the computations of composite 

bar structures. (Keynote lecture) Proc. of Fourth Int. Colloquium on 

Computation of Shell & Spatial Structures, June 4-7,2000, Chania-

Crete, Greece, CD-ROM 20 pages & abstracts vol.pp.558-559. 

222. J.B.Obrębski, N.Jankowska: Numerical analysis of internal forces 

disposition in nodes of thin-walled frames. Proc. of Fourth Int. 

Colloquium on Computation of Shell & Spatial Structures, June 4-7, 

2000, Chania-Crete, Greece CD-ROM 10 pages & abstracts vol.pp.80-

81. 

223. J.B.Obrębski, R.Szmit: Dynamics and dynamical stability of tall 

buildings, (Invited lecture 30min). Int. Conf. ICSSD, Taipei, Taiwan, 

Dec. 7-9.2000, pp.85-94. 

224. J.B.Obrębski: On procedures for shape and form finding on example 

of some families of space bar structures. Int. IASS WG 15th Structural 

Morphology Conf. Delft, Netherlands, 17-20.08.2000, pp. 123-130. 

225. J.B.Obrębski: On the mechanics and strength analysis of composite 

structures. (Invited paper 30min.) Structural Engineering, Mechanics 

and Computation, Cape Town, 2-4.04.2001, Edited by  A.Zingoni, 

Elsevier Science Limited, Amsterdam-London-New York - Oxford 

- Paris- Shannon – Tokyo, 2001, pp.161-172. 

226. J.B.Obrębski: Examples of non-conventional analysis for composite 

bar structures. The 7TH International Conference on Modern Building 

Materials, Structures and Techniques. Wilno, Litwa, 16-18 May, 2001 

pp. 289-290 & CD-ROM. 

227. J.B.Obrębski: Some new applications of the theory of thin-walled 

bars. 3-rd Intern. Conf. on thin-walled structures, Kraków 5-7.06.2001, 

Edited by J.Zaraś, K.Kowal-Michalska, J.Rhodes, Elsevier Amsterdam 

– London – New York – Oxford – Paris – Shannon – Tokyo,  pp.321-

328. 

228. J.B.Obrębski: On evaluation of the accuracy for designing process of 

composite structures. International 9TH  Ukrainian-Polish Seminar on 

Theoretical Foundations of Civil Engineering. 27.06-1.07.2001, 

pp.505-516. 

229. J.B.Obrębski: On mechanical behaviour of space bar structures built 

of elements having golden proportions. International IASS Symposium 

, Nagoya, Japan, 9-14.10.2001, 232-233 +CD-RO6. 

230. J.B.Obrębski: Thin-walled bars and structures – contemporary 

problems. Intern. Conf. on Lightweight Structures in Civil Engineering. 

24-28.06.2002, Warsaw, Poland, pp.487-496 

231. J.B.Obrębski:New mechanical problems in analysis of composite 

bars space structures. Intern. Conf. on Lightweight Structures in Civil 

Engineering. 24-28.06.2002, Warsaw, Poland, pp.926-935. 

232. J.B.Obrębski: Examples of 3D-Time space application for dynamical 

analysis of structures. Intern. Conf. on Lightweight Structures in Civil 

Engineering. 24-28.06.2002, Warsaw, Poland, pp.936-945 

233. J.B.Obrębski, A.H.Fahema: Comparison of double curvature space 

bar structures using SPES computer programs. Intern. Conf. on 

Lightweight Structures in Civil Engineering. 24-28.06.2002, Warsaw, 

Poland, pp.967-973. 

234. J.B.Obrębski: Remarks on Influence of Design Solutions on the 

Space Bar Structures Mechanical Behavior. Fifth International 

Conference on Space Structures, University of Surrey, Guildford, 

Surrey, UK, 19-21 August 2002.  pp. 1169-1178. 

235. J.B.Obrębski: On strength calculations of composite wooden bars. 

Fifth International Conference on Space Structures, University of 

Surrey, Guildford, Surrey, UK, 19-21 August 2002. pp. 217-226 

236. J.B.Obrębski: Applications of uniform criterion for geometrical 

unchengeability, stability and dynamic stability of structures. 

(Invited lecture). Int. Conf. ICSSD, Singapore, Dec. 16-18.2002, 

pp.70-79.  (10  pages, I 010) 

237. J.B.Obrębski - Approaches to dynamics of bar structures. Int. 

Conf. ICSSD, Singapore, Dec. 16-18.2002,  pp.254-259. (6 pages, I 

011) 

238. J.B.Obrębski: Advantages of 3D-Time Space Description for 

Dynamical Analysis of Structures. (Invited Paper - 12 pages). 

International Conference IASS-APCS, Taipei, Taiwan, 22-25.10. 

2003, 40-41 +CD-ROM. 

239. J.B.Obrębski: Designing principles of lightweight structures. 

International Conference IASS-APCS, Taipei, Taiwan, 22-25.10. 

2003, pp. 240-241. 

240. J.B.Obrębski: Some New possibilities for dynamical analysis of 

structues. The 8th International Conference on Modern Building 

Materials, Structures and Techniques. Vilnius, Lithuania, 19-21 May, 

2004. 

241. J.B.Obrębski: Examples of some parameters influence on bridges 

behaviour under moving loadings. The Second International 

Conference on Structural Engineering, Mechanics and Computation, 5-

7 July, 2004, Cape Town, South Africa, A.A.Balkema Publishers 

Leiden/London/New York/Philadelphia/Singapore. Abstracts vol. 

p.171, CD – pp. 859-864. 

242. J.B.Obrębski: Some trends and advantages of wood application in 

contemporary civil engineering. (Invited lecture)  The Second 

International Conference on Structural Engineering, Mechanics and 

Computation, 5-7 July, 2004, Cape Town, South Africa, A.A.Balkema 

Publishers Leiden/London/New York/ Philadelphia/ Singapore. 

Abstracts vol. p.14, CD – pp. 73-81. 

243. J.B.Obrębski: Observations on rational designing of space 

structures. Intern. IASS Symposium on Shell and Spatial Structures 

from Models to Realization. Sept. 20-24, 2004, Montpellier, France. 

244. J.B. Obrebski,  P. Kierzkowski, J. Tolksdorf : Analysis of 

ellipsoidal concrete dome for sport hall designed in almost moment-

less state. Intern. IASS Symposium on Shell and Spatial Structures 

from Models to Realization. Sept. 20-24, 2004, Montpellier, France. 

245. J.B.Obrębski: Some examples of space structures morphology 

based on bars golden proportions. Intern. IASS Symposium on Shell 

and Spatial Structures from Models to Realization. Sept. 20-24,  & 



5th Structural Morphology Seminar Sept. 17-18, 2004,  Montpellier, 

France. 

246. J.B.Obrębski: Some approaches to rational designing of space bar 

structures, (Invited lecture). Proceedings of the 5th International 

Conference on Computation of Shell and Spatial Structures, June 1-

4, 2005 Salzburg, Austria, p. 167.  

247. J.B.Obrębski: Observations on exactness of structures numerical 

analyses. Proc. IASS Int. Symp. on Theory, Technique, Valuation, 

Maitenance, Sept. 6-9, 2005, Bucharest, Romania, pp. 115-122. 

248. J.B.Obrębski: Lightweight Structures in Civil Engineering – 

Development, State-Of-The-Art, Tendencies,Advantages, Weak 

Sides.  (Invited lecture) The Third Saxonian Middle- and Est 

Europa Day,  organized by the Dresden University of Technology. 

One of the 12 Workshops in parallel sessions: "Light Weight 

Construction, Innovation by Technical Integration",  Drezno 

16.06.2006 (no information about printing).  

249. J.B.Obrębski: Some Own Approaches to Computer Aided Design 

of Complicated Bar Structures. The 10th World Multi-Conference 

on Systemics, Cybernetics and Informatics. Orlando, Organized by 

International Institute of Informatics and Systemics, Florida, USA 

16-19.07.2006, pp.255-260.  

250. J.B.Obrębski: UNIDOM – Proposal of the system for space bar 

structures. IASS-APCS 2006 Beijing, China, New Olympics, New 

Shell and Spatial Structures, 15-19.10.2006, pp.86-87, and CD-

ROM.  

251. J.B. Obrębski: Development and state-of-the-art of Lightweight 

Structures in Civil Engineering. Proc. Of the Third Intern. Conf. on 

Structural Engineering, Mechanics and computations. 10-12 

September 2007, Cape Town, South Africa,  abstract pp. 281-282 + 

CD ROM. 

252. J.B. Obrębski: Torsion in analysis of space bar frames – review 

and discussion.  (Invited Paper). Proc. Of the Third Intern. Conf. 

on Structural Engineering, Mechanics and computations. 10-12 

September 2007, Cape Town, South Africa,  abstract pp. 49-50 + 

CD ROM. 

253. J.B. Obrębski: Lightweight structures in civil engineering – 

trends, advantages, problems. (Invited Speaker),  Structural 

Engineers World Congress 2007 (SEWC 2007). The third Congress 

dedicated to the “art, science and practice of structural 

engineering”. November 2-7, 2007, Bangalore, India. 

254. J.B. Obrębski: More on morphology of UNIDOM space bar 

system.  Structural Engineers World Congress 2007 (SEWC 2007). 

The third Congress dedicated to the “art, science and practice of 

structural engineering”. November 2-7, 2007, Bangalore, India. 

255. J.B. Obrębski: Accuracy of designing process in the light of 

contemporary knowledge. Proc. of IASS 2007 International 

Symposjum, on Shell and Spatial Structures: StructuralArchitecture 

– Towards the future looking to the past. 3-6 December 2007, 

Venice, Italy, abstract pp. 263-264 + CD ROM. 

256. J.B. Obrębski: Multi parametrical instability of straight bars, 

Proc. of IASS-IACM  the 6th International Conference on 

Computation of Shell and Spatial Structures, Cornell University,  

28-31 May 2008, Ithaca, USA 

257. J.B. Obrębski: Geometry, examples and architectural aspects of 

the family of two-curvature space bar structures, IASS-    , 

Acapulco, Mexico, 2008 

258. J.B. Obrębski: Geometrical fundations and architectural 

possibilities of UNIDOM space bar system, IASS-2008, ACA, 

MEX, the International Symposium on: New Materials and 

Technologies, New Designs and Innovations – A Sustainable 

Approach to Architectural and Structural Design; October 27-31, 

2008, Acapulco, Mexico. 

 

Supervised Master degree diplom works 

259. Janusz Świszulski: Analiza wytrzymałościowa struktur płaskich 

zbudowanych z prętów o złożonych przekrojach poprzecznych. 

(Strength analysis of plane structures butli of bars with composed 

cross-sections),Warsaw, 1976. 

260. Barbara Wiśniakowska: Analiza numeryczna metodą równań 

różnicowych budynku o szkielecie współpracującym z płytami. 

(Numerical analysis of buildings with skeleton cooperating with 

plater). Poltechnika Warszawska Wydział Fizyki Technicznej i 

Matematyki Stosowanej. Warsaw, 1976 (reviewer – prof. .G. 

Rakowski). 

261. Lidia Bogdańska:  Analiza numeryczna metodą równań różnico-

wych elementu płytowego współpracującego z konstrukcją budynku. 

(Numerical analysis of plate element cooperating with building 

skeleton). Politechnika Warszawska Wydział Fizyki Technicznej i 

Matematyki Stosowanej, Warsaw, 1976, (reviewer - prof. 

G.Rakowski). 

262. Bogdan Zbyszyński: Analiza statyczna przekrycia strukturalnego.  

(Static analysis structural roof). Politechnika Warszawska IMKI. (co-

supervisor from C.O.B.P.K.M. „Mostostal” – dr inż. Andrzej 

Czechowski).  Topic proposed by Designing Office of Mostostal 

(C.O.B.P.K.M.). May 1978, Warsaw. 

263. Wojciech Słabosz: Wytrzymałościowa analiza numeryczna struktur 

obciążonych symetrycznie lub antysymetrycznie. (Numerical strength 

analysis of structures loaded symmetrically or unsymmetrically). 

Warsaw University of Technology, IMKI. Warsaw, 1978, (reviewer - 

prof.J.Karczewski.). 

264. Mirosław Kowalski: Analiza wpływu sposobu podparcia struktury 

na jej nośność. (Analysis of influence of structure supporting manner 

on its capacity). Pol. Warsz. Teoria Kontr. Warsaw, 1979, (reviewer -

prof. J.Karczewski). 

265. Dorota Zakrzewska: Wyznaczanie sztywności ortotropowego 

płaskiego superelementu stropowego lub ściennego. (Determination of 

rigidity for flor or wall superelement). Warsaw University of 

Technology, Warsaw, 1981. 

266. Zdzisław Urbaniak: J.B.Obrębski – consultant of M.Sc. degree 

diploma work on strength and designing of thin-walled bridge girder 

with orthotropic plate. Supervisor - prof. H.Czudek. Warsaw, 1983. 

267. Leszek Ficenes: Analiza wytrzymałościowa wybranych profili 

cienkościennych według teorii drugiego przybliżenia. (Strength 

analysis selected thin-walled profiles by theory of secondo 

approximation). Warsaw University of Technolgy IMKI. Warsaw. 

27.06.1984. 

268. Jolanta Kobylińska: Drgania giętno-skrętne cienkościennego 

dźwigara mostowego wymuszone obciążeniem aerodynamicznym. 

(Bendig-torsion vibrations of bridge girder excited by aerodynamical 

loading),  22.10.1986, Warsaw. 

269. Marcin Majdecki: Program dydaktyczny do obliczania wielkości 

statycznych ustrojów płytowych metodą różnic skończonych. 

(Didactic program for analysis statical quantities by Finie Differences 

Metod). ART Olsztyn Wydział Budownictwa Lądowego. 06.1992. 

270. Piotr Srokosz: Program dydaktyczny do obliczania tarcz metodą 

różnic skończonych. (Didactic program for calculation of shields by 

Finie Differences Metod). ART. Olsztyn Wydział Budownictwa 

Lądowego. Olsztyn 1993. 

271. Magdalena Kruk: Wzory transformacyjne metody przemieszczeń 

dla wybranych zagadnień dynamiki i teorii drugiego rzędu 

cienkościennego pręta prostego. (Phisical relations of displacement 

metod for selected problem sof dynamice and theory of second order 

for thin-walled straight bar). Warsaw University of Technology, 

IMKI. 15.03.1993. 

272. Paweł Flont: Badanie doświadczalne stanu odkształcenia i 

naprężenia pewnej klasy prętów cienkościennych. (Experimental 

investigations certain class of thin-walled bars). Warsaw University 

of Technology, IMKI, 06.1995. 

273. Leszek Bihuń, Wojciech Kruk: Rekonstrukcja dokumentacji 

istniejącego budynku WNT, UWM w Olsztynie z uwzględnieniem 

wstępnej koncepcji rozbudowy.  (Reconstruction of documentation of 

existing building of Faculty of Technical Sciences, Warmia and 

Mazury University, taking into consideration preciminary conception 

of expansion). ART Olsztyn, Wydział Budownictwa Lądowego.  

24.09.2003, (reviewer dr. L.Małyszko). 

274. Jan Tolksdorf: Projekt hali sportowej – eliptyczna powłoka 

żelbetowa. Część I. (Project of sport hall – elliptical reinforced dome. 

Part I). ART Olsztyn Wydział Budownictwa Lądowego. Supervisor  

J.B.Obrębski; Consultant prof. M.Knauff.   25.05.2004, (reviewer dr 

L. Małyszko).  

275. Paweł Kierzkowski,: Projekt hali sportowej – konstrukcja wsporcza 

powłoki i trybun. Część II. (Project of sport hall – supporting structure 



for dome and stands. Part II). ART. Olsztyn Wydział Budownictwa 

Lądowego, dyplom wspólny z J.Tolksdorfem (see Ref 274), 

Consultant J.B. Obrębski; supervisor prof. M. Knauff. 25.05.2004, 

(reviewer dr L. Małyszko). 

 

Supervised Ph. D. disertations 

276. Zdzisław URBANIAK: Nieliniowa analiza cienkościennych prętów 

pryzmatycznych metodą iteracyjną. (Nonlinear analysis of thin-walled 

prismatic bars by iterativa metod).  Open:      13.05.1987 

277. Mohamed Essam El-AWADI Mohamed El-Hadi: Influence of 

chosen structural parameters on stability and strength of thin-walled 

bars, (Wpływ wybranych parametrów konstrukcyjnych na stateczność 

i wytrzymałość prętów cienkościennych). (Procedure and dissertation 

in English), (Reviewers:   prof. dr hab.inż. Zbigniew.Kowal, Pol. 

Świętokrz.; prof. dr hab. inż. Jan Karczewski Pol.Warsz.).   open -  

28.11.1990, defence - 24.03.1993, accepted 31.03.1993. 

278. Lesław KWAŚNIEWSKI: Wyznaczanie obciążeń krytycznych 

prętów cienkościennych przy zastosowaniu szeregów potęgowych. 

(Determination of critical loadings for thin-walled bars by application 

of Power series). (Reviewers: dr.hab.inż.Mieczysław Wieczorek prof. 

n. WAT; dr hab.inż. Andrzej Gomuliński prof. Politechnika 

Warszawska). open:  20.12.1995; defence - 23.10.1997. 

279. Abdulmunaem Hamsuna FAHEMA: Shape and form finding for 

certain class of two curvature space bar structures. ( Poszukiwanie 

kształtu i formy dla pewnej klasy dwu-krzywiznowych prętowych 

konstrukcji przestrzennych), (Procedure and dissertation in English), 

(Reviewers:  dr hab.inż. Paweł Śniady, prof. n. Politechniki 

Wrocławskiej; dr hab. inż. Tomasz Lewiński,  prof. n. Politechniki 

Warszawskiej; open - 30.04.1997; defence - 24.11.1999; accepted 

15.12.1999. 

280. Masaud Harakat RHUMA: Optimization of space bar structures 

alternatively loaded using decomposition method( Optymalizacja 

przestrzennych konstrukcji prętowych metodą dekompozycji przy 

wariantowaniu obciążeń), (Procedure and dissertation in English), 

(Reviewers: dr hab. inż. Marian Oswald, prof.n. Politechniki 

Poznańskiej, dr hab. inż. Tomasz Lewiński prof. n. Politechniki 

Warszawskiej; prof. dr hab. inż. Jan Karczewski Pol. Warsz.). open - 

24.03.1999; defence - 07.03.2001; accepted 21.03.2001. 

281. Robert SZMIT: Pręt kompozytowy jako model obliczeniowy 

budynku wysokiego. (Composite bar as a calculation model for tall 

building)  (Recenzenci: prof. dr. hab. Roman Świtka, Politechnika 

Poznańska; dr hab. .inż. Roman Nagórski prof. n. Pol. Warsz.).  open - 

26.05.1999; defence - 18.06.2002; accepted 10.07.2002. 

282. Natalia JANKOWSKA: Wpływ odkształcalności węzłów na rozkład 

sił przekrojowych w ramach cienkościennych (Influence of nodes 

deformability on disposition of internal forces in thin-walled 

frames). Warsaw University of Technology,  Warsaw 2006. 

(Reviewers:  prof. dr hab. Cz. Szymczak Politechnika Gdańska; dr 

hab. inż. A.Glinicka PW. open - 28.04.1999; defence -2006; 

acceptation R.W.:  2006 

283. Jan Tolksdorf: Analza wytrzymałości i stateczności sprężystych 

prętów prostych pod obciążeniem złożonym. (Analyzis of strength and 

stablity straight bars dunder combined loading. Open on 06.06.2007. 

  

Scientific-research works and project applied practically 

284. Program on digital machines ODRA 1204/1304/1305/CYBER 70, 

(1974/75). Oryginal system of input data and numerical algorithm for 

program KMT used next in other authors programs. Program several 

times was used for designing calculations for designing offices. Part of 

author in program elaboration 70%. 

285. Large program system (1976-80) WDKM for space bar structures 

cooperating with coninual elements; static, dynamics, stability, 

numerical dimensioning. ODRA s.1305.  Many practical analysis of 

space structures, including for MOSTOSTAL directly or as M.Sc 

diplomas. Own part 85%. 

286. Program system WDKM, (continuation 1981-85). Several scientific 

calculations e.g. for Ref 300 by habliltation prof. R. Nagórski. 

Lectures for students of Theory of Structures (Teoria Konstrukcji). 

Part of author 95%. 

287. Theory of thin-walled bars supported by experiments (1986-90); 

with any cross-sections - static, dynamics, statbility, interactions with 

surrounding media (soil, air, water), dynamical stability.  Teory 100%, 

experiments and elaboration of results - 80%. 

288. Implementation of elaboratem theories to lectures on two faculties 

in Warsaw University of Technology: Strength of Materials  (ISIW 

PW (89-91). -  IL PW); Mechanics of Thin-Walled Bars in Warsaw 

and in Olsztyn.  

289. Elaboration of didactic programs MES, MRS and others in Turbo 

Pascal.  Lectures and classes for computer Methods in Mechanics in 

ART Olsztyn (later UWM Olsztyn). 

290. Theory for composite bars with any cross-sections. Implemented to 

lectures and classes in Strength of Materiale (II, IL PW, Refs 30, 32, 

35).  100%.  

291. About 30 „invited lectures” around the world on: - mechanics of 

composite and thin-walled bars; torsion of bar structures; mechanics 

of space bar structures; morphology of selected space bar structures 

and Domes since 1995. 100%. 

292. Elaboration of algorithms and programs for practical, limited 

optimization of complicated, large space bar structures (system SPES 

bazed on FEM.  70%. 

293. Elaboration of new methods of application of Finite Differences to 

analysis of structures including dynamics (3D-TSM), by program 

MRS. 80%. 

294. Experimental investigations of thin-walled bars in range of 

influence of torsion; Refs 277, 282.  50%. 

295. Comparative strength calculations, and researches on exactness of 

analyses: theoretical, numerical and experimental. Recommendations 

of application better theories and calculations methods. 100%. 

 

 

List of references of the other authors 

Attention: wider lists of eferences can be found in above author’s papers.  

296. A.Glinicka: Studium odkształcalności cienkościennych belek 
stalowych z wypełnieniem z betonu lekkiego. O. W. Politechniki 
Warszawskiej, 2002, s.160. 

297. W.Gutkowski, J.B.Obrębski et al.:  Statische Berechnung der 

Raumstabwerke. Werner-Verlag (Arkady) Warsaw, 1985, 

(translation of Polish edition 1980, Obliczenia statyczne przekryć 

strukturalnych, Arkady). 

298. P.Jastrzębski, J.Mutermilch, W.Orłowski: Strength of materials 
(In Polish), Arkady, 1985 (Vol.1), 1986 (Vol.2). 

299. R. Nagórski: Jednowymiarowe modele ciągłe siatkowych 

dźwigarów powierzchniowych, WPW, Warsaw, 1983. 

300. W.Nowacki: Dynamics of structures (In Polish), ARKADY, 

Warsaw, 1961. 

301. W.Nowacki: Structural mechanics (In Polish), PWN, Warsaw, 
1974. 

302. R.P.Pruki, P.M.Lopez: Finite Element Analysis (FEA) tests on a 

simple beam - important information for users of FEA software. First 

SEMC,  Cape Town, by A. Zingoni, 2001. 

303.  J.Rutecki: Strength of thin-walled structures (In Polish). PWN, 

Warsaw, 1957. 

304. B.S.Smith, A.Coull: Tall building structures: Analysis and 

design. John Wiley & Sons, Inc. New York, Chichester, Brisbane, 

Toronto, Singapore, 1991. 

305. А.И.Стрельбицкая: Исследование прочности тонкостенных 

стержней за пределом упругости. Издательство Академи Наук 

ССР, Киев, 1958. 

306. А.И.Стрельбицкая: Предслнoе состoяниe рам из 
тонкостенных стержней при изгибе с кручением. Издательство 
Академи Наук ССР, Киев, 1964. 

307. А.И.Стрельбицкая, Г.И.Евсеенко: Экспериментальное 
исследование упруго-пластической работы тонкостен ных 
конструкций. Издательство „Наукова Думка” Ака-деми Наук 
ССР, Киев, 1968. 

308. C.Szymczak, M.Kujawa: Analiza statycz. rusztów zbudow. z 

prętów cienkośc. 8 Sc. Conf.on Connect. and Joints in Metal 

Struct.Olsztyn-Łańsk.16-19.10,2003,pp.391-397. 
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